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Throughout this homework, let Z+ denote the set of all non-negative integers, R+ be the set of all non-

negative real numbers, and [a : b] := {a, a+ 1, · · · , b− 1, b} for a, b ∈ Z with a ≤ b. We also write [n] := [1 : n]

for n ∈ N. Moreover,
⊎

denotes the disjoint union, and given a set A and k ∈ Z+,
(
A
k

)
:= {B ⊆ A : |B| = k}.

We also assume throughout this assignment that the underlying probability space is the canonical proba-

bility space (Cd, Cd,Px) we have constructed in Section 7.1 in [1]. Here, Cd := C
(
[0,+∞) ,Rd

)
refers to the

function space of all continuous functions from R+ = [0,+∞) to Rd, Cd denotes the σ-field on Cd generated

by the coordinate maps, i.e.,

Cd = σ
({
{ω(·) ∈ Cd : ω(t1) ∈ A1, · · · , ω(tn) ∈ An} : 0 ≤ t1 < · · · < tn < +∞, A1, · · · , An ∈ Rd

})
,

where Rd := B
(
Rd
)

is the Borel σ-field on Rd, and Px is the canonical probability measure on (Cd, Cd) so

that the continuous-time stochastic process {B(t) : t ∈ R+} consists of coordinate maps on (Cd, Cd) forms a

d-dimensional Brownian motion such that Px ({ω(·) ∈ Cd : ω(0) = x}) = 1. In other words, x ∈ Rd indicates

the starting point of {B(t) : t ∈ R+} and this d-dimensional Brownian motion is often called the canonical

d-dimensional Brownian motion or the Wiener process [3]. The probability measure Px is often called the

Wiener measure with initial state x ∈ Rd, and the canonical probability space (Cd, Cd,Px) is referred to as

the Wiener probability space [2].

Problem 1 (Exercise 7.4.1. in [1]).

(i) We first prove that the continuous-time stochastic process
{
B1 (Ta) : a ∈ R+

}
has independent and

stationary increments. Since

Ta = inf
{
t ∈ R+ : B2(t) = a

}
= inf {t ∈ R+ : B(t) ∈ R× [a,+∞)}

when B(0) = (0, 0) ∈ R2, Ta is a stopping time with respect to the right-continuous filtration {F(t) : t ∈ R+}
defined on (C2, C2) generated by the canonical two-dimensional Brownian motion {B(t) : t ∈ R+}, i.e.,

F(t) :=
⋂

x∈R2

σ
(
F+
t ∪NPx

)
,

where NPx := {A ⊆ C2 : A ⊆ B for some B ∈ C2 such that Px {B} = 0} denotes the collection of all Px-null

sets. Now, we choose any 0 < a1 < a2 < · · · < an < +∞ and f1, f2, · · · , fn ∈ B (R,R), where B (S,S) refers
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to the collection of all bounded measurable functions from (S,S) into (R,R). Due to Theorem 7.3.8 in [1],

we know that B1(Ta) is F(Ta)-measurable for every a ∈ R+. Thanks to the continuity of Brownian paths,

we have Ta1 ≤ Ta2 ≤ · · · ≤ Tan when B(0) = (0, 0). Thus by Theorem 7.3.6 in [1],

F(Ta1) ⊆ F(Ta2) ⊆ · · · ⊆ F(Tan),

thereby Xk := B1(Tak)−B1(Tak−1
) is F(Tak)-measurable for every k ∈ [n], where a0 := 0.

Claim 1. For any a ∈ R+, we have P(0,0) {Ta < +∞} = 1.

Proof of Claim 1.

To begin with, we observe that if
{
B(t) =

(
B1(t), B2(t), · · · , Bd(t)

)
: t ∈ R+

}
is a standard d-dimensional

Brownian motion defined on a probability space (Ω,F ,P), then
{
Bi(t) : t ∈ R+

}
, i ∈ [d], are independent

standard one-dimensional Brownian motions defined on (Ω,F ,P). Therefore,
{
B2(t) : t ∈ R+

}
is a standard

one-dimensional Brownian motion under P(0,0). So by Theorem 7.2.8 in [1], we arrive at

P(0,0)

{
lim sup
t→+∞

B2(t)√
t

= +∞
}

= 1.

From the relation
{

lim supt→+∞
B2(t)√

t
= +∞

}
⊆ {Ta < +∞}, we obtain P(0,0) {Ta < +∞} = 1 as desired.

Claim 2. For any 0 ≤ u < v < +∞ and ϕ ∈ B (R,R), one has

E(0,0)

[
ϕ
{
B1(Tv)−B1(Tu)

}∣∣F(Tu)
]
· 1{Tu<+∞}

P(0,0)-a.s.
= E(0,0)

[
ϕ
{
B1(Tv−u)

}]
· 1{Tu<+∞}. (1)

Proof of Claim 1.

For any ω(·) ∈ C2, we have

(Tv ◦ θTu) (ω) = inf {t ∈ R+ : Bt+Tu(ω) = v}
(a)
= inf {t ∈ R+ : Bt(ω) = v} − Tu(ω)

= Tv(ω)− Tu(ω),

(2)

when B(0) = (0, 0), where the step (a) holds since Tu(ω) < Tv(ω), which comes from the continuity of ω(·).
Therefore, we see that

B1
Tv(ω)(ω)−B1

Tu(ω)(ω) = B1
Tv(ω)−Tu(ω) (θTu(ω))−B1

0 (θTu(ω))

(b)
= B1

(Tv◦θTu )(ω) (θTu(ω))−B1
(0◦θTu )(ω) (θTu(ω))

=
{(
B1
Tv −B

1
0

)
◦ θTu

}
(ω),

(3)

where the step (b) makes use of the equation (2). In short, we obtain

B1(Tv)−B1(Tu) =
(
B1(Tv)−B1(0)

)
◦ θTu (4)

on C2. So we arrive at

E(0,0)

[
ϕ
{
B1(Tv)−B1(Tu)

}∣∣F(Tu)
]
· 1{Tu<+∞}

(c)
= E(0,0)

[{
ϕ ◦

(
B1(Tv)−B1(0)

)}
◦ θTu

∣∣F(Tu)
]
· 1{Tu<+∞}

(d)
= E(B1(Tu),u)

[
ϕ
{
B1(Tv)−B1(0)

}]
· 1{Tu<+∞}

(e)
= E(0,0)

[
ϕ
{
B1(Tv−u)

}]
· 1{Tu<+∞},

where the above steps (c)–(e) can be justified as follows:
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(c) the equation (4);

(d) the strong Markov property of Brownian motions (Theorem 7.3.9 in [1]) together with the fact that

B2(Tu) = u when Tu < +∞;

(e) translation invariance of Brownian motions.

So we may deduce that for any 0 ≤ u < v < +∞ and ϕ ∈ B (R,R),

E(0,0)

[
ϕ
{
B1(Tv)−B1(Tu)

}] (f)
= E(0,0)

[
E(0,0)

[
ϕ
{
B1(Tv)−B1(Tu)

}
· 1{Tu<+∞}

∣∣F(Tu)
]]

(g)
= E(0,0)

[
E(0,0)

[
ϕ
{
B1(Tv)−B1(Tu)

}∣∣F(Tu)
]
· 1{Tu<+∞}

]
(h)
= E(0,0)

[
E(0,0)

[
ϕ
{
B1(Tv−u)

}]
· 1{Tu<+∞}

]
(i)
= E(0,0)

[
ϕ
{
B1(Tv−u)

}]
,

(5)

where the above steps (f)–(i) can be validated as follows:

(f) Claim 1;

(g) {Tu < +∞} ∈ F(Tu);

(h) Claim 2;

(i) Claim 1.

Therefore, the continuous-time stochastic process
{
B1(Ta) : a ∈ R+

}
has stationary increments under P(0,0).

On the other hand, one can see that

E(0,0)

[
n∏
k=1

fk(Xk)

]
= E(0,0)

[
E(0,0)

[
n∏
k=1

fk(Xk)

∣∣∣∣∣F(Tan−1)

]]
(j)
= E(0,0)

[
n−1∏
k=1

fk(Xk) · E(0,0)

[
fn(Xn)| F(Tan−1)

]]
(k)
= E(0,0)

[
n−1∏
k=1

fk(Xk) · E(0,0)

[
fn
{
B1(Tan)−B1(Tan−1)

}∣∣F(Tan−1)
]
· 1{Tan−1<+∞}

]
(l)
= E(0,0)

[
n−1∏
k=1

fk(Xk) · E(0,0)

[
fn
{
B1(Tan−an−1)

}]
· 1{Tan−1<+∞}

]
(m)
= E(0,0)

[
n−1∏
k=1

fk(Xk)

]
E(0,0)

[
fn
{
B1(Tan−an−1)

}]
(n)
= E(0,0)

[
n−1∏
k=1

fk(Xk)

]
E(0,0) [fn(Xn)] ,

(6)

where the above steps (j)–(n) hold due to the following reasons:
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(j) fk(Xk) is F(Tan−1)-measurable for every k ∈ [n− 1];

(k) Claim 1;

(l) Claim 2;

(m) Claim 1;

(n) the equation (5).

By employing the equation (6) repeatedly, we eventually obtain

E(0,0)

[
n∏
k=1

fk(Xk)

]
=

n∏
k=1

E(0,0) [fk(Xk)]

for every f1, f2, · · · , fn ∈ B (R,R). Hence, X1, X2, · · · , Xn are independent and this implies that
{
B1(Ta) : a ∈ R+

}
has independent increments under P(0,0).

(ii) Given any a ∈ (0,+∞), consider the
(
R2,R2

)
-valued continuous-time stochastic process {X(t) : t ∈ R+}

defined on (C2, C2) by

Xt(ω) =
(
X1
t (ω), X2

t (ω)
)

:=
1

a
Ba2t(ω), t ∈ R+.

By the scaling invariance of Brownian motions, {X(t) : t ∈ R+} is also a standard two-dimensional Brownian

motion under P(0,0) and thus it has the same joint law as the canonical standard two-dimensional Brownian

motion {B(t) : t ∈ R+} under P(0,0). We can observe that

B1(Ta) = B1
(
inf
{
t ∈ R+ : B2(t) = a

})
= B1

(
a2 inf

{
t ∈ R+ : B2(a2t) = a

})
= B1

(
a2 inf

{
t ∈ R+ : X2(t) = 1

})
= a ·X1

(
inf
{
t ∈ R+ : X2(t) = 1

})
.

(7)

We define a measurable function f : (C2, C2)→ (R,R) by

f(Φ(·)) = f (Φ1(·),Φ2(·)) := Φ1 (inf {t ∈ R+ : Φ2(t) = 1}) · 1{Φ(·)∈C2:Φ2(t)=1 for some t∈R+}.

Since two (C2, C2)-valued random variables B• : (C2, C2)→ (C2, C2) and X• : (C2, C2)→ (C2, C2) given by

B•(ω)(t) := Bt(ω) and X•(ω)(t) := Xt(ω), ∀t ∈ R+, ω(·) ∈ C2,

have the same distributions under P(0,0), f ◦B• : (C2, C2)→ (R,R) and f ◦X• : (C2, C2)→ (R,R) have the

same distributions under P(0,0). Thus, we have from Claim 1 together with the fact that two (C2, C2)-valued

random variables B• : (C2, C2)→ (C2, C2) and X• : (C2, C2)→ (C2, C2) have the same law under P(0,0) that

P(0,0) {B(t) = 1 for some t ∈ R+} = P(0,0) {X(t) = 1 for some t ∈ R+} = 1. (8)

Hence we see from the equation (8) that

B1
(
inf
{
t ∈ R+ : B2(t) = 1

}) P(0,0)-a.s.
= f ◦B•
d
= f ◦X•

P(0,0)-a.s.
= X1

(
inf
{
t ∈ R+ : X2(t) = 1

})
,
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thereby

B1
(
inf
{
t ∈ R+ : B2(t) = 1

}) d
= X1

(
inf
{
t ∈ R+ : X2(t) = 1

})
. (9)

Taking two pieces (7) and (9) collectively yields the desired result B1(Ta)
d
= a ·B1(T1) under P(0,0).

(iii) Finally, we show that B1(Ta) follows the Cauchy distribution with parameter (0, a) ∈ R× (0,+∞).

From the fact that
{
B1(t) : t ∈ R+

}
and

{
B2(t) : t ∈ R+

}
are independent standard one-dimensional Brow-

nian motions under P(0,0), we observe that
{
B1(t) : t ∈ R+

}
and Ta = inf

{
t ∈ R+ : B2(t) = a

}
are indepen-

dent under P(0,0). Hence for any t ∈ R,

P(0,0)

{
B1(Ta) ≤ t

}
= E(0,0)

[
P(0,0)

{
B1(Ta) ≤ t

∣∣Ta}]
=

∫ ∞
0

fTa(s) · P(0,0)

{
B1(Ta) ≤ t

∣∣Ta = s
}

ds

(o)
=

∫ ∞
0

a√
2πs3

exp

(
−a

2

2s

)
· P(0,0)

{
B1(s) ≤ t

}
ds

(p)
=

∫ ∞
0

a√
2πs3

exp

(
−a

2

2s

)[∫ t

−∞

1√
2πs

exp

(
−x

2

2s

)
dx

]
ds

(q)
=

∫ t

−∞

a

2π

[∫ ∞
0

1

s2
exp

(
−a

2 + x2

2s

)
ds

]
dx

(r)
=

∫ t

−∞

a

2π

[∫ 0

∞
u2 exp

(
−
u
(
a2 + x2

)
2

)
·
(
− 1

u2

)
du

]
dx

=

∫ t

−∞

1

π
· a

a2 + x2
dx,

where fTa(·) is the probability density function of the first hitting time Ta to a ∈ (0,+∞) which is given by

fTa(s) :=
a√

2πs3
exp

(
−a

2

2s

)
for s ∈ (0,+∞) , (10)

whose derivation can be found in Equation (7.4.6) in [1], and the steps (o)–(r) can be verified as follows:

(o) since
{
B1(t) : t ∈ R+

}
and Ta are indendent under P(0,0), we have for every s ∈ (0,+∞),

P(0,0)

{
B1(Ta) ≤ t

∣∣Ta = s
}

= P(0,0)

{
B1(s) ≤ t

∣∣Ta = s
}

= P(0,0)

{
B1(s) ≤ t

}
.

(p) since
{
B1(t) : t ∈ R+

}
is a standard one-dimensional Brownian motion, B1(s) ∼ N(0, s) under P(0,0);

(q) it’s possible to interchange the order of integrals due to the Fubini-Tonelli’s theorem;

(r) the substitution u = 1
s .

Hence, the probability density function of B1(Ta), a ∈ (0,+∞), is given by

fB1(Ta)(x) =
1

π
· a

a2 + x2
, ∀x ∈ R,

and this completes the proof of the desired result.
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Problem 2 (Exercise 7.4.2. in [1]).

To begin with, we provide a proof of the following result:

Lemma 1 (Exercise 7.2.1 in [1]).

Let τ0 := inf {s ∈ (0,+∞) : B(s) = 0}, and R := inf {t ∈ (1,+∞) : B(t) = 0}. Then for any x ∈ R and

t ∈ (0,+∞), one has

Px {R > 1 + t} =

∫
R
p1(x, y) · Py {τ0 > t} dy, (11)

where {pt(·, ·) : t ∈ R+} refers to the Markov semi-group for the one-dimensional Brownian motion, i.e.,

pt(x, y) :=


1√
2πt

exp
{
− (y−x)2

2t

}
if t > 0;

δx(y) if t = 0.

Proof of Lemma 1.

We first note that for any t ∈ (0,+∞),

{B(s) 6= 0 for all s ∈ (0, t]} = {τ0 > t} ;

{B(1 + s) 6= 0 for all s ∈ (0, t]} = {R > 1 + t}
(12)

which follow from the continuity of the Brownian paths. Thus,

Px {R > 1 + t} (a)
= Px {B(1 + s) 6= 0 for all s ∈ (0, t]}

= Px {ω(·) ∈ C1 : (θ1(ω)) (s) 6= 0 for all s ∈ (0, t]}

= Ex
[
1{B(s)6=0 for all s∈(0,t]} ◦ θ1

]
(b)
= Ex

[
1{τ0>t} ◦ θ1

]
= Ex

[
Ex
[
1{τ0>t} ◦ θ1

∣∣F+
1

]]
(c)
= Ex

[
EB(1)

[
1{τ0>t}

]]
=

∫
R
p1(x, y) · Py {τ0 > t} dy,

where the above steps (a)–(c) can be confirmed as follows:

(a) the relation (12);

(b) the relation (12);

(c) the Markov property for Brownian motions (Theorem 7.2.1 in [1]).

Given any a ∈ R, let

τa := inf {t > 0 : B(t) = a} and Ta := inf {t ∈ R+ : B(t) = a} .

It’s clear that τa = Ta when B(0) ∈ R \ {a}.

Lemma 2. Px {τy > t} = P0

{
τ|y−x| > t

}
for any x, y ∈ R and t ∈ R+.
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Proof of Lemma 2.

Let us consider the continuous-time stochastic process {X(t) : t ∈ R+} defined on (C1, C1) by

Xt(ω) := −Bt(ω), ∀t ∈ R+, ω(·) ∈ C1.

It’s easy to see that {X(t) : t ∈ R+} has the same joint law under P0 as {B(t) : t ∈ R+}, thereby for any

a ∈ R,

τa = inf {t > 0 : B(t) = a}

= inf {t > 0 : X(t) = −a}
d
= inf {t > 0 : B(t) = −a}

= τ−a

(13)

under P0. Thus we can conclude that

Px {τy > t} (d)
= P0 {τy−x > t} (e)

= P0

{
τ|y−x| > t

}
,

where the step (d) follows from the translation invariance of Brownian motions, and the step (e) makes use

of (13). This completes the proof of Lemma 2.

By employing Lemma 2 to the equation (11) with x = 0, we obtain

P0 {R > 1 + t} =

∫
R
p1(0, y) · Py {τ0 > t} dy

=

∫
R
p1(0, y) · P0

{
τ|y| > t

}
dy

= 2

∫ ∞
0

p1(0, y) · P0 {Ty > t}dy,

which leads us to

P0 {R ≤ 1 + t} = 1− P0 {R > 1 + t}

= 1− 2

∫ ∞
0

p1(0, y) · P0 {Ty > t} dy

= 2

∫ ∞
0

p1(0, y)dy − 2

∫ ∞
0

p1(0, y) · P0 {Ty > t} dy

= 2

∫ ∞
0

p1(0, y) (1− P0 {Ty > t}) dy

= 2

∫ ∞
0

p1(0, y) · P0 {Ty ≤ t} dy.

(14)

Finally, we express the equation (14) by using the explicit form of the probability density function (10)

of the first hitting time Ty to y ∈ (0,+∞):

P0 {R ≤ 1 + t} = 2

∫ ∞
0

p1(0, y) · P0 {Ty ≤ t}dy

= 2

∫ ∞
0

1√
2π

exp

(
−y

2

2

)[∫ t

0

y√
2πx3

exp

(
− y

2

2x

)
dx

]
dy

(f)
= 2

∫ t

0

1

2π
x−

3
2

[∫ ∞
0

y exp

{
−y

2

2

(
1 +

1

x

)}
dy

]
dx

=

∫ t

0

1

π
√
x(1 + x)

dx,

(15)
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where the step (f) is due to the Fubini-Tonelli’s theorem. By differentiating both sides of the equation (15)

by t, we obtain the following explicit form of the probability density function fR(·) of R:

fR(1 + t) =
1

π
√
t(1 + t)

, ∀t ∈ (0,+∞) .

Problem 3 (Exercise 7.4.3. in [1]).

(i) We first fix any a ∈ (0,+∞), t ∈ (0,+∞), and −∞ < u < v ≤ a, and then define a stopping time

S := inf {u ∈ [0, t) : B(u) = a} with respect to the right-continuous filtration {F(t) : t ∈ R+} generated from

{B(t) : t ∈ R+}. Now, we define two bounded measurable functions ϕ(·, ·) : ([0,+∞)× C1,B ([0,+∞))⊗ C1)→
(R,R) and ϕ̃(·, ·) : ([0,+∞)× C1,B ([0,+∞))⊗ C1)→ (R,R) by

ϕ (s, ω(·)) := 1{s<t, u<ω(t−s)<v};

ϕ̃ (s, ω(·)) := 1{s<t, 2a−v<ω(t−s)<2a−u}.

Then it’s clear that for any s ∈ [0, t),

ϕ (s, θs(ω)(·)) := 1{s<t, u<ω(t)<v};

ϕ̃ (s, θs(ω)(·)) := 1{s<t, 2a−v<ω(t)<2a−u}.

So we arrive at if B(0) = 0, then for every ω(·) ∈ C1,

ϕ (S(ω), θS(ω)(·)) · 1{S<+∞}(ω) := 1{S<+∞, u<B(t)<v}(ω);

ϕ̃ (S(ω), θS(ω)(·)) · 1{S<+∞}(ω) := 1{S<+∞, 2a−v<B(t)<2a−u}(ω)
(a)
= 1{2a−v<B(t)<2a−u}(ω),

(16)

where the step (a) holds since {2a− v < B(t) < 2a− u} ⊆ {S < +∞} = {Ta < t} if B(0) = 0, which

follows from the continuity of the Brownian paths. Thanks to the symmetry of standard Brownian motions,

we can easily observe that both {B(t)− a : t ∈ R+} and {a−B(t) : t ∈ R+} are standard one-dimensional

Brownian motions under Pa. So {B(t) : t ∈ R+} and {2a−B(t) : t ∈ R+} have the same joint law under

Pa. Consequently, we obtain

Ea [ϕ (s, ·)] = Pa {s < t, u < B(t− s) < v}

= Pa {s < t, u < 2a−B(t− s) < v}

= Pa {s < t, 2a− v < B(t− s) < 2a− u}

= Ea [ϕ̃ (s, ·)]

(17)
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for every s ∈ R+. By leveraging two pieces (16) and (17) together, we can deduce

P0 {Ta < t, u < B(t) < v} = P0 {S < +∞, u < B(t) < v}

= E0

[
1{S<+∞, u<B(t)<v}

]
(b)
= E0

[
{ϕ (S, ·) ◦ θS} · 1{S<+∞}

]
(c)
= E0

[
E0 [ϕ (S, ·) ◦ θS | F(S)] · 1{S<+∞}

]
(d)
= E0

[
EB(S) [ϕ(S, ·)] · 1{S<+∞}

]
(e)
= E0

[
Ea [ϕ(S, ·)] · 1{S<+∞}

]
(f)
= E0

[
Ea [ϕ̃(S, ·)] · 1{S<+∞}

]
(g)
= E0

[
EB(S) [ϕ̃(S, ·)] · 1{S<+∞}

]
(h)
= E0

[
E0 [ ϕ̃ (S, ·) ◦ θS | F(S)] · 1{S<+∞}

]
(i)
= E0

[
{ϕ̃ (S, ·) ◦ θS} · 1{S<+∞}

]
(j)
= E0

[
1{2a−v<B(t)<2a−u}

]
= P0 {2a− v < B(t) < 2a− u} ,

where the above steps (b)–(j) can be justified as follows:

(b) the equation (16);

(c) {S < +∞} ∈ F(S);

(d) the strong Markov property for Brownian motions (Theorem 7.3.9 in [1]);

(e) if S < +∞, then B(S) = B(Ta) = a;

(f) the equation (17);

(g) the same reason as the step (e);

(h) the same reason as the step (d);

(i) the same reason as the step (c);

(j) the same reason as the step (b).

(ii) For any −∞ < u < v ≤ a, one has from the statement (i) that

P0 {Ta < t, u < B(t) < v} =

∫ 2a−u

2a−v
pt(0, y)dy =

∫ v

u
pt(0, 2a− y)dy,

thereby we can see that

P0 {Ta < t, B(t) < v} = lim
n→∞

P0 {Ta < t, −n < B(t) < v}

= lim
n→∞

∫ v

−n
pt(0, 2a− y)dy

(k)
=

∫ v

−∞
pt(0, 2a− y)dy,

(18)
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where the step (k) follows from the Lebesgue’s dominated convergence theorem. Then for any x ∈ (−∞, a),

we obtain

P0 {Ta < t,B(t) ≤ x} = lim
n→∞

P0

{
Ta < t,B(t) < x+

1

n

}
(l)
= lim

n→∞

∫ x+ 1
n

−∞
pt(0, 2a− y)dy

(m)
=

∫ x

−∞
pt(0, 2a− y)dy,

(19)

where the step (l) makes use of the equation (18), and the step (m) is owing to the Lebesgue’s dominated

convergence theorem. As the last step, differentiating both sides of (19) yields the desired result.

(iii) Let M(t) := sup {B(s) : s ∈ [0, t]} for t ∈ R+. From the definition of M(t), it’s clear that

{Ta < t} = {M(t) ≥ a} .

So from the equation (19), we obtain

P0 {M(t) ≥ a, B(t) ≤ x} =

∫ x

−∞
pt(0, 2a− y)dy.

Thus we reach

P0 {M(t) > a, B(t) ≤ x} = lim
n→∞

P0

{
M(t) ≥ a+

1

n
, B(t) ≤ x

}
= lim

n→∞

∫ x

−∞
pt

(
0, 2

(
a+

1

n

)
− y
)

dy

(n)
=

∫ x

−∞
pt(0, 2a− y)dy,

where the step (n) follows from the Lebesgue’s dominated convergence theorem. Consequently for any

a ∈ (0,+∞) and x ∈ (−∞, a), we have

P0 {M(t) ≤ a, B(t) ≤ x} = P0 {B(t) ≤ x} − P0 {M(t) > a, B(t) ≤ x}

=

∫ x

−∞
{pt(0, y)− pt(0, 2a− y)} dy.

(20)

Hence, the joint probability density function of (M(t), B(t)), f(M(t),B(t))(·, ·), can be evaluated by

f(M(t),B(t))(a, x) =
∂2

∂a∂x
P0 {M(t) ≤ a, B(t) ≤ x}

=
∂

∂a
{pt(0, x)− pt(0, 2a− x)}

=
2(2a− x)√

2πt3
exp

{
−(2a− x)2

2t

}
for every a ∈ (0,+∞) and x ∈ (−∞, a), as desired.

Problem 4 (Exercise 7.5.3. in [1]).

(i) We divide our proof in the following three cases:
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(Case #1) x ≤ a: Then, we know that σ = Ta and Ta < Tb when B(0) = x due to the continuity of the

Brownian paths. Therefore, we have

(LHS) = Ex
[
exp (−λσ) · 1{Ta<Tb}

]
= (RHS),

as desired.

(Case #2) x ≥ b: Thanks to the continuity of the Brownian paths, we see that σ = Tb and Ta > Tb for

this case. Thus,

(LHS) = Ex
[
exp {−λ (Ta − Tb)} · exp (−λTb) · 1{Ta>Tb}

]
(a)
= Ex

[
exp {−λ (Ta ◦ θTb)} · exp (−λTb) · 1{Ta>Tb}

]
(b)
= Ex

[
Ex [ exp (−λTa) ◦ θTb | F(Tb)] · 1{Tb<+∞} · exp (−λTb) · 1{Ta>Tb}

]
(c)
= Ex

[
EB(Tb) [exp (−λTa)] · 1{Tb<+∞} · exp (−λTb) · 1{Ta>Tb}

]
(d)
= Ex

[
Eb [exp (−λTa)] · 1{Tb<+∞} · exp (−λσ) · 1{Ta>Tb}

]
= Ex

[
exp (−λσ) · 1{Ta>Tb}

]
· Eb [exp (−λTa)]

(e)
= (RHS),

where the above steps (a)–(d) hold due to the following reasons:

(a) If Ta(ω) > Tb(ω), then we see that

(Ta ◦ θTb) (ω) = inf {t ∈ R+ : Bt+Tb(ω) = a} = inf {t ∈ R+ : Bt(ω) = a} − Tb(ω) = Ta(ω)− Tb(ω)

for every ω(·) ∈ C1;

(b) exp (−λTb) is F(Tb)-measurable, {Ta > Tb} ∈ F(Tb) by Exercise 7.3.5 in [1] (note that this exercise

was one of the problems in Homework #8), and {Ta > Tb} ⊆ {Tb < +∞};

(c) the strong Markov property for Brownian motions (Theorem 7.3.9 in [1]);

(d) B(Tb) = b when Tb < +∞, and σ = Tb, Ta > Tb when B(0) = x;

(e) Ta > Tb when B(0) = x.

(Case #3) a < x < b: From the continuity of the Brownian paths, we have σ = Ta ∧ Tb if B(0) = x.

Also, we may observe that if Ta(ω) < Tb(ω), then

(Tb ◦ θTa) (ω) = inf {t ∈ R+ : Bt+Ta(ω) = b} = inf {t ∈ R+ : Bt(ω) = b} − Ta(ω) = Tb(ω)− Ta(ω), (21)

and if Ta(ω) > Tb(ω), then

(Ta ◦ θTb) (ω) = inf {t ∈ R+ : Bt+Tb(ω) = a} = inf {t ∈ R+ : Bt(ω) = a} − Tb(ω) = Ta(ω)− Tb(ω). (22)
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Hence, we get

(LHS) = Ex
[
exp (−λTa) · 1{Ta<Tb}

]
+ Ex

[
exp (−λTa) · 1{Ta>Tb}

]
= Ex

[
exp (−λTa) · 1{Ta<Tb}

]
+ Ex

[
exp {−λ (Ta − Tb)} · exp (−λTb) · 1{Ta>Tb}

]
(f)
= Ex

[
exp (−λTa) · 1{Ta<Tb}

]
+ Ex

[
exp {−λ (Ta ◦ θTb)} · exp (−λTb) · 1{Ta>Tb}

]
(g)
= Ex

[
exp (−λTa) · 1{Ta<Tb}

]
+ Ex

[
Ex [ exp (−λTa) ◦ θTb | F(Tb)] · 1{Tb<+∞} · exp (−λTb) · 1{Ta>Tb}

]
(h)
= Ex

[
exp (−λTa) · 1{Ta<Tb}

]
+ Ex

[
EB(Tb) [exp (−λTa)] · 1{Tb<+∞} · exp (−λTb) · 1{Ta>Tb}

]
(i)
= Ex

[
exp (−λσ) · 1{Ta<Tb}

]
+ Ex

[
Eb [exp (−λTa)] · exp (−λσ) · 1{Ta>Tb}

]
= Ex

[
exp (−λσ) · 1{Ta<Tb}

]
+ Ex

[
exp (−λσ) · 1{Ta>Tb}

]
· Eb [exp (−λTa)]

= (RHS),

where the steps (f)–(i) can be justified as follows:

(f) the equation (22);

(g) the same reason as the step (b);

(h) the same reason as the step (c);

(i) we have B(Tb) = b if Tb < +∞, and

σ =

Ta if Ta < Tb;

Tb if Ta > Tb.

Taking three cases (Case #1)–(Case #3) collectively establishes our desired result.

(ii) Here, we only consider the case a < x < b. From the statement (1), we obtain

Ex
[
exp (−λσ) · 1{Ta<Tb}

]
+ Ex

[
exp (−λσ) · 1{Ta>Tb}

]
· Eb [exp (−λTa)] = Ex [exp (−λTa)]

(j)
= E0 [exp (−λTa−x)]

(k)
= E0 [exp (−λTx−a)]
(l)
= exp

{
−(x− a)

√
2λ
}
,

(23)

where the above steps (j)–(l) can be verified as follows:

(j) the translation invariance of Brownian motions;

(k) in the proof of Lemma 2, we have seen that Ta
d
= T−a under P0 for every a ∈ R;

(l) Theorem 7.5.7 in [1].

On the other hand, by employing exactly the same argument as the proof of (i), one can show that

Ex
[
exp (−λσ) · 1{Ta>Tb}

]
+ Ex

[
exp (−λσ) · 1{Ta<Tb}

]
· Ea [exp (−λTb)] = Ex [exp (−λTb)]

(m)
= E0 [exp (−λTb−x)]

(n)
= exp

{
−(b− x)

√
2λ
}
,

(24)
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where the step (m) follows from the translation invariance of Brownian motions, and the step (n) makes use

of Theorem 7.5.7 in [1]. Furthermore, from the translation invariance of Brownian motions together with

the fact that Ta
d
= T−a under P0 for every a ∈ R, one has

Eb [exp (−λTa)] = Ea [exp (−λTb)]
(o)
= exp

{
−(b− a)

√
2λ
}

(25)

for every λ ∈ R+, where the step (o) follows by Theorem 7.5.7 in [1]. For the sake of readers’ convenience,

let us adopt the following convention: for any λ ∈ R+,

A(λ) := Ex
[
exp (−λσ) · 1{Ta<Tb}

]
and B(λ) := Ex

[
exp (−λσ) · 1{Ta>Tb}

]
.

By combining three pieces (23)–(25) together, we eventually arrive at the following system of linear equations:A(λ) + exp
{
−(b− a)

√
2λ
}
·B(λ) = exp

{
−(x− a)

√
2λ
}

;

exp
{
−(b− a)

√
2λ
}
·A(λ) +B(λ) = exp

{
−(b− x)

√
2λ
}
.

(26)

By solving the linear system (26), we can obtain the following explicit forms of A(λ) and B(λ):

A(λ) =
sinh

{
(b− x)

√
2λ
}

sinh
{

(b− a)
√

2λ
} and B(λ) =

sinh
{

(x− a)
√

2λ
}

sinh
{

(b− a)
√

2λ
}

for every λ ∈ R+, as desired. This completes the proof of the statement (ii).

Problem 5 (Exercise 7.5.4. in [1]).

To begin with, we define u(·, ·) : R× R→ R by

u(x, t) := x4 − 6x2t+ 3t2.

Then, it is easy to see that u(·, ·) : R× R→ R obeys the following partial differential equation:

∂u

∂t
+

1

2
· ∂

2u

∂x2
= 0 on R2.

So by Theorem 7.5.8 in [1], the continuous-time stochastic process
{
u(t, B(t)) = B(t)4 − 6tB(t)2 + 3t2 : t ∈ R+

}
is a continuous-time martingale with respect to the right-continuous filtration {F(t) : t ∈ R+} generated by

the canonical standard one-dimensional Brownian motion {B(t) : t ∈ R+} under P0. Since T ∧λ is a bounded

stopping time with respect to {F(t) : t ∈ R+} for any non-random constant λ ∈ R+, and {u(t, B(t)) : t ∈ R+}
is a right-continuous martingale with respect to {F(t) : t ∈ R+}, i.e., a martingale whose sample paths are

all right-continuous everywhere, we may apply Theorem 7.5.1 in [1]: for every λ ∈ R+,

0 = E0 [u (T ∧ λ,B(T ∧ λ))] = E0

[
B(T ∧ λ)4

]
+ 3 · E0

[
(T ∧ λ)2

]
− 6 · E0

[
(T ∧ λ) ·B(T ∧ λ)2

]
. (27)

At this point, we can make the following observations:

(1) T = Ta ∧ Tb when B(0) = 0 due to the continuity of the Brownian paths. By Theorem 7.2.8 in [1], we

have P0 {Ta < +∞} = P0 {Tb < +∞} = 1, thereby T < +∞ P0-almost surely;

(2) B(T ∧ λ) ∈ [a, b] for every λ ∈ R+, when B(0) = 0 owing to the continuity of the Brownian paths;
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(3) From Theorem 7.5.5 in [1], we know that E0 [T ] = −ab < +∞ and this implies that T ∈ L1 (C1, C1,P0).

Thus, one can see that when B(0) = 0,∣∣(T ∧ λ) ·B(T ∧ λ)2
∣∣ ≤ (a2 ∨ b2

)
· T,

which asserts that we may apply the dominated convergence theorem to
{

(T ∧ λ) ·B(T ∧ λ)2 : λ ∈ R+

}
.

From the above observations, we can conclude that

E0

[
B(T ∧ λ)4

] λ→+∞−→ E0

[
B(T )4

]
(∵ the bounded convergence theorem together with (1)) ;

E0

[
(T ∧ λ)2

]
λ→+∞−→ E0

[
T 2
]

(∵ the monotone convergence theorem) ;

E0

[
(T ∧ λ)B(T ∧ λ)2

] λ→+∞−→ E0

[
T ·B(T )2

]
(∵ the dominated convergence theorem together with (2) and (3))

As the final step, we let λ→ +∞ in the equation (27):

0 = E0

[
B(T ∧ λ)4

]
+ 3 · E0

[
(T ∧ λ)2

]
− 6 · E0

[
(T ∧ λ) ·B(T ∧ λ)2

]
λ→+∞−→ E0

[
B(T )4

]
+ 3 · E0

[
T 2
]
− 6 · E0

[
T ·B(T )2

]
.

So we reach

E0

[
B(T )4

]
+ 3 · E0

[
T 2
]

= 6 · E0

[
T ·B(T )2

] (a)

≤ 6
{
E0

[
T 2
]
· E0

[
B(T )4

]} 1
2 , (28)

where the step (a) follows by the Cauchy-Schwarz inequality. Our desired results, (i) E0

[
T 2
]
≤ 4·E0

[
B(T )4

]
,

and (ii) E0

[
B(T )4

]
≤ 36 ·E0

[
T 2
]
, can be easily derived from the bound (28): one can see that the series of

inequalities

3 · E0

[
T 2
]
≤ E0

[
B(T )4

]
+ 3 · E0

[
T 2
]
≤ 6

{
E0

[
T 2
]
· E0

[
B(T )4

]} 1
2

gives the result (i), while the series of inequalities

E0

[
B(T )4

]
≤ E0

[
B(T )4

]
+ 3 · E0

[
T 2
]
≤ 6

{
E0

[
T 2
]
· E0

[
B(T )4

]} 1
2

yields the result (ii). This completes the proof of the given statements of Problem 5.
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