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Throughout this homework, let Z, denote the set of all non-negative integers, Ry be the set of all non-
negative real numbers, and [a : b] ;== {a,a+1,--- ;b —1,b} fora,b € Z with a < b. We also write [n] := [1 : n]
for n € N. Moreover, |4 denotes the disjoint union, and given a set A and k € Z, (?) ={BC A:|B|=k}.

We also assume throughout this assignment that the underlying probability space is the canonical proba-
bility space (Cy, Cq, Px) we have constructed in Section 7.1 in [1]. Here, Cy := C ([0, +00) , RY) refers to the
function space of all continuous functions from Ry = [0, 400) to R%, Cy denotes the o-field on Cy generated

by the coordinate maps, i.e.,
CdZU({{W(') €Cq:w(t) € A1, w(tn) € A} 1 0 <t <+ <tp < 400, Ay, -+ ,An€73d}),

where R? := B (Rd) is the Borel o-field on RY, and Py is the canonical probability measure on (Cyq,Cq) s0
that the continuous-time stochastic process {B(t) : t € Ry} consists of coordinate maps on (Cy,Cq) forms a
d-dimensional Brownian motion such that Py ({w(-) € Cy : w(0) = x}) = 1. In other words, x € R indicates
the starting point of {B(¢) : ¢t € R4} and this d-dimensional Brownian motion is often called the canonical
d-dimensional Brownian motion [3]. The probability measure Px is often called the Wiener measure with
initial state x € R?, and the canonical probability space (Cy,Cq, Px) is referred to as the Wiener probability

space [2].

Problem 1 (Ezercise 7.2.2. in [1]).
We begin the proof with the following useful result:

Lemma 1. For every t € (0,+00), we have
{w(:) € C1 : To(w) >t} = {w(:) € C1 := Bs(w) =w(s) #0, Vs € (0,t]}. (1)

Proof of Lemma 1.

If To(w) = inf {s € (0,+0) : Bs(w) = w(s) =0} > ¢, it’s clear that Bs(w) = w(s) # 0 for all s € (0,¢],
otherwise we have Tp(w) < t. So the “C” direction is obvious. Now, it remains to prove the “O” direction. If
Bs(w) = w(s) # 0 for all s € (0,¢], then we know that {s € (0, +00) : Bs(w) = w(s) = 0} C (¢,4+00) and this
yields Tp(w) > t. So it suffices to show that Tp(w) # ¢. Assume on the contrary that Tp(w) = ¢. Then for



any given € > 0, there exists an s(¢) € [t, + €) such that By)(w) = w(s(e)) = 0. Since By(w) = w(t) # 0,
s(€) € (t,t+e¢) for every e > 0. Let s, := s (%) € (t,t+2) for each n € N. Then one can see that
lim,, o0 $p, = t, and the continuity of the Brownian path at w(-) yields

By(w) = w(t) =w ( lm 5,) = lim w(s,) = lim o (s (1>> 0.

n—oo n—00 n—o0 n

This fact contradicts the assumption that By(w) = w(t) # 0, thereby we obtain Ty(w) > ¢ and this establishes

the “O” direction.

O
We may observe that for any ¢t € (0,1),
{w(:) € C1 : L(w) >t} = {w(-) € C1 : Bs(w) = w(s) =0 for some s € (t,1]}
=0, ({w(:) € C1 : Bs(w) = w(s) = 0 for some s € (0,1 —t]})
=1\ 07 (w(-) € C1 @ By(w) = w(s) #0, Vs € (0,1 —1]})
@ o\ 07 ({wl() € C i To(w) > 1— 1)
=60, ({w() € C1: To(w) < 1-t}),
where the step (a) holds by Lemma 1, and it leads to
{w) e Cr: L(w) <t} =0, ({w(-) € C : To(w) > 1—1t})
for every t € (0,1). Thus we arrive at
i<ty = Lo (qmps1-0p) = Lmos1-13 © 01 (2)

for every t € (0,1). Hence, we see that for any ¢ € (0,1),

Po{L <t} =Eo [L{r<y]

© Eo [1g7y>1-13 © O]

=Ko [Eo [L{zy>1-1 © 0:] Fi']]

D Ey [Enw [Limys1-9]]

= /Rdy pt(07y) ’ Ey [:H'{To>17t}:|
:/mo,y)-Py{Tp 1t} dy,
R

where the step (b) follows from the equation (2), and the step (c) is due to the Markov property (Theorem
7.2.1 in [1]), and this completes the proof.

Problem 2 (Ezercise 7.2.4. in [1]).

(i) Let X(f) := limsup, o+ %, where f : ((0,4+00),B((0,+00))) = ((0,+00),B((0,+00))) is a mea-



surable function. Then one can see that

= limsu @
X =1 tJ,0+p f(t)

{00}

ce(0.4]

e FOCFrCFy
n

e Ff

for every n € N. Therefore, X (f) is (ﬂflo:l F T> -measurable and the right-continuity of the continuous-time
filtration {F; : t € Ry} implies 22, F1 = Fy . Hence, X(f) is F; -measurable.

On the other hand, we know that Pon{7+ =0} =1, where 74 := inf {t € (0, +00) : B(t) > 0}, by Theorem
7.2.4 in [1]. Thus if w(-) € {r4 = 0}, we have

x(De) = tim s { 2 s e 0.0] 20

So we obtain Py { X (f) > 0} = 1. Now, we employ the Blumenthal’s zero-one law (Theorem 7.2.3 in [1]) to
the events {X (f) < A} € F": Po {X(f) < A} € {0,1} for every A € [0, +0c]. Let

¢:=1inf {\ € [0,+oc] : Bo {X(f) < \} =1} € [0, +od] .
If ¢ = +00, we have Py {X(f) = +o0} = 1 and we are done. On the other hand, if ¢ < 400, it’s clear that
Po {X(f) <c+21} =1forall n € N. So we arrive at
1
Po (X(N) <} = Jim LR {X() St L =1 3)

Also we know that Py {X(f) < c¢— %} = 0 for all n € N, thereby one has

Po (X () <} = Jim TR0 {X() Sc- L =0 (1)

n

Taking two pieces (3) and (4) collectively yields
Po{X(f) = ¢} =Po{X(f) < ¢} —Po{X(f) <c}=1-0=1,
i.e., X(f) = limsup; o+ % = ¢, Pp-almost surely, as desired.

(t)

ii) We claim that lim sup, g+ Bl 400, Pg-almost surely. In order to prove this claim, we first consider
t}0 NG

the continuous-time stochastic process {Y'(t) : t € Ry} on (C1,C;) defined by

tB (1) ifte (0,400);
0 otherwise.



According to Theorem 7.2.6 in [1], {Y(¢) : t € R4} is a one-dimensional Brownian motion starting at 0 € R

under Py. Also, one has

) B(t) ) Y (s)
limsup —= = limsup VtY’ ( ) = lim sup . (5)
tL0t Vit tL0+ s—too VS
(s)

So it suffices to prove that limsup,_,, % = 400, Pp-almost surely. To this end, we first observe for any
M € (0,+00) that

o 5 arf 2w i (- v

N[00}

n=1 Lk=n

-t erof O {00 )} o

n

=t > )

Wp(z> M >0,

where Z ~ N(0,1), and the step (a) holds since \}%) 4 N(0, 1) under Py. We know that for any k € N,

()
Y (k)

) \513) is .7-" T-measurable for every k > n. Therefore limsupy,_, ., v/ is
Fi T measurable for every n € N. From the rlght continuity of the continuous-time filtration {]: tite R+}
we see that (00, FI = F and thus limsup,,_, % is F -measurable. Consequently, the Blumenthal’s

is .7-" T_measurable. So for each n € N

zero-one law (Theorzm 7.2.3 in [1]) together with the inequality (6) implies that

P, {hzn_)solép Y\}Z) > M} 1 )

for every M € (0,+00). Take

A= 1 > M €.
N {imow 02 !

Then we can see that Py {A} =1 and if w(-) € A, then

. Yn(w)
lim su > M 8
o ®
Yo(w) _

for every M € N. So by letting M — +oo in (8), we obtain limsup,, Tn = 100, which also implies

Y
lim sup ()

s—+400 \/g

for all w(-) € A. Thus limsup,_,, % = 400, Pp-almost surely, and putting this result into (5) completes

the proof.



Problem 3 (Ezercise 7.3.2. in [1]).

Let S : (Cy,Cq) — ([0,400],B([0,+0c])) and T : (Cy,Cq) — ([0,400], B ([0, +00])) be stopping times
with respect to the continuous-time filtration {F; : ¢ € Ry }. At this point, we recall that the continuous-time
filtration {F; : t € Ry} given by

Fii= () o(Fr UM, VE€Ry,
x€R4

is right-continuous, where N, := {A C Cy: A C B for some B € C;4 such that P, { B} = 0} denotes the col-

lection of all Pyx-null sets.

(1) For every t € Ry, we have
{SAT <z} ={S<z}u{T <z}eF,.
R en
e xT e x

Thus, S AT :=min {5, T} is a stopping time with respect to the continuous-time filtration {F; : t € Ry }.

(2) For every t € Ry, we have

{SVT <z} ={S<z}n{T <z} e F,.
R
e €T x

Thus, S VT :=max{S,T} is a stopping time with respect to the continuous-time filtration {F; : t € Ry}.

(3) Let Q4+ :=QNRy =QnN[0,+00). We can prove the following useful lemma:

Lemma 2. For every z € Ry,

{(S+T<z}= |J {S<gn{T<r}), (9)
(g:r)€T(z)

where I'(z) := {(q¢,r) € Q% : ¢+ 1 < z}.

Proof of Lemma 2.

The “2” direction is trivial. In order to verify the “C” direction, we choose an w(-) € {S+ T < z}. As
S(w) < z—T(w), we may choose ¢(w) € QN (S(w),x — T'(w)) and this is possible since Q is dense in R. Then
we have T'(w) < z — q(w), so we may take r(w) € QN (T'(w),z — g(w)) which is also possible since Q is dense
in R. Since ¢(w) > S(w) >0, r(w) > T(w) > 0, and ¢(w) + r(w) < z, it’s clear that (¢(w),r(w)) € T'(x).
Moreover, we see that S(w) < ¢(w) and T'(w) < r(w) and this implies that

whe |J {S<agn{T<r},
(g,r)€l(z)
and this proves the “C” direction.
O

Note that I'(z) is countable for every x € R, and if (¢,r) € 'y, we have ¢ < g+r <z andr < g+7r < z.
Thus if (¢,7) € Ty, then
{S<qteFy,CF, and {T'<r}eF CF,.



As a consequence, for every r € Ry

(S+T<a} U ds<an{T<r})er, (10)
(a7)er@) o7

where the step (a) follows from Lemma 2. So,

[e.o]
1
{§+T <z} = ﬂ {S+T<:c+k} S
k=n
E}—er% 6.7'—1+%

for all n € N. Hence, {S+T <z} €2, F,,1 = JF, owing to the right-continuity of the continuous-time
filtration {F; : t € Ry} and this shows that S + T is also a stopping time with respect to {F; : t € Ry }.

So in particular, when ¢ € R, is a non-random constant, it’s clear that ¢ is a stopping time with respect
to {F: : t € Ry}. Therefore by employing the above statements (1)-(3), we may conclude that S A ¢, SV,
and S + t are all stopping times with respect to the right-continuous filtration {F; : t € R }.

Problem 4 (Ezercise 7.3.3. in [1]).
Let {T,,},2; be a sequence of stopping times with respect to the right-continuous filtration {F; : t € R, }.

(1) For every t € R, we see that

{sup{T}, : n e N} <t} = ﬂ {T, <t} e F,
5

thereby sup {7}, : n € N} is a stopping time with respect to the right-continuous filtration {F; : t € Ry }.

(2) For every t € (0,400), we see that

oo (e 9]

{inf{Tn:nGN}<t}:©{Tn<t}:U U {Tngt—;} € F.
n=1

n=1 | k=1 \ ,

Therefore, we arrive at

pay 1
{inf {T}, : n e N} <t} = ﬂ {inf{Tn:nEN}<t+k}6};+;
k=m
e}—tJr% g}—t+i

for every m € N, so one has {inf {T}, : n € N} <t} € (\,'_; F,, 1 = F; for any t € Ry by the right-continuity
of the continuous-time filtration {F; : t € Ry }. Hence, inf {7}, : n € N} is also a stopping time with respect
to the right-continuous filtration {F; : t € Ry }.

(3) By the statement (1), sup {7} : k£ > n} is a stopping time with respect to the right-continuous filtration
{Fi:t € Ry} for every n € N. Therefore,

limsup 7T, = li_>m L (sup {7y : k > n})
n—oo

n—oo



is also a stopping time with respect to {F: : t € Ry} due to Theorem 7.3.2 in [1].

(4) By the statement (2), inf {7} : k > n} is a stopping time with respect to the right-continuous filtration
{F¢ : t € Ry} for every n € N. Therefore,

liminf7,, = lim 71 (inf {7} : kK > n})
n—oo n—o0
is also a stopping time with respect to {F; : t € Ry} owing to Theorem 7.5.3 in [1].

Problem 5 (Ezercise 7.53.5. in [1]).
Let S and T be stopping times with respect to the right-continuous filtration {F; : t € R;}. We begin

with the following useful lemma:

Lemma 3. Let 7: (Cq,Cq) — ([0, +00], B ([0, +0c])) be a stopping time with respect to the right-continuous
filtration {F; : t € Ry}, Then,

Fr={AecCqy: An{T <t} € F, Vte (0,+00)}. (11)

Proof of Lemma 3.
For the “C” direction, we choose any A € F,. Then for every ¢t € (0,+00), one has

Aﬁ{7<t}:Aﬂ<© {@t—i}):@ <Am{7gt—i}>eﬂ.

n=1 n=1

€ Fov(e-1) &

For the “O” direction, we assume that A € Cy4 is an event such that AN{r <t} € F; for all t € (0, +00).
We now fix any ¢ € R;.. Then we have

Am{rgt}zArw(ﬁ {r<t+;}> = ﬁ (Am{r<t+]1€}> € Fiy1

k:n k:n

Cer

€ F o

t+ i

ESl

for every n € N. So, An{r <t} € ()2, F,,1 = F; due to the right-continuity of the continuous-time
filtration {F; : t € Ry }. Hence, A € F, and this completes the proof of Lemma 3.

O
(1) We first consider the event {S < T'}.
Claim 1. For every s € (0,+00), we have
{S<Tin{S<s}= |J {S<agn{T>q}). (12)

q€QNI0,s]
Proof of Claim 1.
The direction “D” of the equality (12) is trivial. Now suppose that S(w) < T(w) and S(w) < s. Then
we have S(w) < min{s, T(w)} and thus we may choose a rational number ¢(w) € Q N (S(w), min {s, T (w)})
which is possible since Q is dense in R. It’s clear that ¢(w) € QN [0, s] and

S(w) < ¢(w) <min{s,T(w)} <s and T(w)>min{s, T(w)} > g(w).

Hence, we arrive at w(-) € Uyeqnp, ({S < ¢t N{T > ¢}) and this proves the “C” direction.



We note that for every ¢ € Q N[0, s],

= 1
{S < q} nL_Jl {S_q n} € Fy C Fs;
G}—O\/( 1) g]'—q
{T>q} =Cy\{T <q} € Fy C Fs.
Thus for any s € (0,+00), one has

(a) (b)
{S<Tin{s<st= |J (US<gn{T>q}) € F,
q€Qn(0,s] c F.

where the step (a) is due to Claim 1, and the step (b) follows from the observation (13). So by Lemma 3,
we see that {S < T} € Fgs.
(2) For every s € (0,400), we define Z(s) :={(¢,7) € Q@ xQ:0<r < q < s}.

Claim 2. For every s € (0,4+00), we have

{S>Tin{S<sy= |J {r<S<gn{T<r}. (14)
(g:1)€(s)

Proof of Claim 2.
The direction “D” of the equality (14) is obvious. Suppose T'(w) < S(w) < s. Since Q is dense in R, we
can take ¢(w) € QN (S(w), s) and r(w) € QN (T'(w), S(w)). Then we have

0<T(w) <rw) < Sw)<qw)<s,

and this implies that (¢(w),r(w)) € Z(s). Thus w(-) € U, ez {r <S5 < gt N{T <r}) and this estab-
lishes the “C” direction of the equality (14).

]
One can observe that for every (q,r) € Z(s),
> 1
{r<S<q={S<gt\{S<r}= U{qu—} \ {S<r} eF
nel n N——
— € Fr C Fs
€ Fov(e-1) €7 (15)

o0 1
= <r-—-— - .
(T <1} n|:1| {T_r n} cF CFy

N—————

C Fr
)_

= ]:0\/(7'7

1
n

Thus for every s € (0,400), one has

(c) (d)
{S>Tin{S<s}= |J {r<S<agn{T<r}) € F,
(a.r)€(s) -




where the step (c) holds by Claim 2, and the step (d) makes use of the observation (15). Hence by Lemma
2,{S>T} e Fs.

B){S=T}=Cy\{S<T}U{S>T}) € Fg by the above statements (1) and (2). Furthermore, by
interchanging the roles between S and T', we see that {S < T'}, {S > T'}, and {S = T'} belong to the stopped
o-field Fr associated to the stopping time 7' with respect to the right-continuous filtration {F; : t € R, }.

This completes the proof of all the given statements.
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