MAS651 Theory of Stochastic Processes Homework \#8

20150597 Jeonghwan Lee
Department of Mathematical Sciences, KAIST

May 19, 2021

Throughout this homework, let \mathbb{Z}_{+}denote the set of all non-negative integers, \mathbb{R}_{+}be the set of all nonnegative real numbers, and $[a: b]:=\{a, a+1, \cdots, b-1, b\}$ for $a, b \in \mathbb{Z}$ with $a \leq b$. We also write $[n]:=[1: n]$ for $n \in \mathbb{N}$. Moreover, \biguplus denotes the disjoint union, and given a set A and $k \in \mathbb{Z}_{+},\binom{A}{k}:=\{B \subseteq A:|B|=k\}$.

We also assume throughout this assignment that the underlying probability space is the canonical probability space $\left(C_{d}, \mathcal{C}_{d}, \mathbb{P}_{\mathbf{x}}\right)$ we have constructed in Section 7.1 in [1]. Here, $C_{d}:=C\left([0,+\infty), \mathbb{R}^{d}\right)$ refers to the function space of all continuous functions from $\mathbb{R}_{+}=[0,+\infty)$ to $\mathbb{R}^{d}, \mathcal{C}_{d}$ denotes the σ-field on C_{d} generated by the coordinate maps, i.e.,

$$
\mathcal{C}_{d}=\sigma\left(\left\{\left\{\omega(\cdot) \in C_{d}: \omega\left(t_{1}\right) \in A_{1}, \cdots, \omega\left(t_{n}\right) \in A_{n}\right\}: 0 \leq t_{1}<\cdots<t_{n}<+\infty, A_{1}, \cdots, A_{n} \in \mathcal{R}^{d}\right\}\right),
$$

where $\mathcal{R}^{d}:=\mathcal{B}\left(\mathbb{R}^{d}\right)$ is the Borel σ-field on \mathbb{R}^{d}, and $\mathbb{P}_{\mathbf{x}}$ is the canonical probability measure on $\left(C_{d}, \mathcal{C}_{d}\right)$ so that the continuous-time stochastic process $\left\{B(t): t \in \mathbb{R}_{+}\right\}$consists of coordinate maps on $\left(C_{d}, \mathcal{C}_{d}\right)$ forms a d-dimensional Brownian motion such that $\mathbb{P}_{\mathbf{x}}\left(\left\{\omega(\cdot) \in C_{d}: \omega(0)=\mathbf{x}\right\}\right)=1$. In other words, $\mathbf{x} \in \mathbb{R}^{d}$ indicates the starting point of $\left\{B(t): t \in \mathbb{R}_{+}\right\}$and this d-dimensional Brownian motion is often called the canonical d-dimensional Brownian motion [3]. The probability measure $\mathbb{P}_{\mathbf{x}}$ is often called the Wiener measure with initial state $\mathbf{x} \in \mathbb{R}^{d}$, and the canonical probability space $\left(C_{d}, \mathcal{C}_{d}, \mathbb{P}_{\mathbf{x}}\right)$ is referred to as the Wiener probability space [2].

Problem 1 (Exercise 7.2.2. in [1]).
We begin the proof with the following useful result:
Lemma 1. For every $t \in(0,+\infty)$, we have

$$
\begin{equation*}
\left\{\omega(\cdot) \in C_{1}: T_{0}(\omega)>t\right\}=\left\{\omega(\cdot) \in C_{1}:=B_{s}(\omega)=\omega(s) \neq 0, \forall s \in(0, t]\right\} \tag{1}
\end{equation*}
$$

Proof of Lemma 1.
If $T_{0}(\omega)=\inf \left\{s \in(0,+\infty): B_{s}(\omega)=\omega(s)=0\right\}>t$, it's clear that $B_{s}(\omega)=\omega(s) \neq 0$ for all $s \in(0, t]$, otherwise we have $T_{0}(\omega) \leq t$. So the " \subseteq " direction is obvious. Now, it remains to prove the " \supseteq " direction. If $B_{s}(\omega)=\omega(s) \neq 0$ for all $s \in(0, t]$, then we know that $\left\{s \in(0,+\infty): B_{s}(\omega)=\omega(s)=0\right\} \subseteq(t,+\infty)$ and this yields $T_{0}(\omega) \geq t$. So it suffices to show that $T_{0}(\omega) \neq t$. Assume on the contrary that $T_{0}(\omega)=t$. Then for
any given $\epsilon>0$, there exists an $s(\epsilon) \in[t, t+\epsilon)$ such that $B_{s(\epsilon)}(\omega)=\omega(s(\epsilon))=0$. Since $B_{t}(\omega)=\omega(t) \neq 0$, $s(\epsilon) \in(t, t+\epsilon)$ for every $\epsilon>0$. Let $s_{n}:=s\left(\frac{1}{n}\right) \in\left(t, t+\frac{1}{n}\right)$ for each $n \in \mathbb{N}$. Then one can see that $\lim _{n \rightarrow \infty} s_{n}=t$, and the continuity of the Brownian path at $\omega(\cdot)$ yields

$$
B_{t}(\omega)=\omega(t)=\omega\left(\lim _{n \rightarrow \infty} s_{n}\right)=\lim _{n \rightarrow \infty} \omega\left(s_{n}\right)=\lim _{n \rightarrow \infty} \omega\left(s\left(\frac{1}{n}\right)\right)=0
$$

This fact contradicts the assumption that $B_{t}(\omega)=\omega(t) \neq 0$, thereby we obtain $T_{0}(\omega)>t$ and this establishes the "?" direction.

We may observe that for any $t \in(0,1)$,

$$
\begin{aligned}
\left\{\omega(\cdot) \in C_{1}: L(\omega)>t\right\} & =\left\{\omega(\cdot) \in C_{1}: B_{s}(\omega)=\omega(s)=0 \text { for some } s \in(t, 1]\right\} \\
& =\theta_{t}^{-1}\left(\left\{\omega(\cdot) \in C_{1}: B_{s}(\omega)=\omega(s)=0 \text { for some } s \in(0,1-t]\right\}\right) \\
& =C_{1} \backslash \theta_{t}^{-1}\left(\left\{\omega(\cdot) \in C_{1}: B_{s}(\omega)=\omega(s) \neq 0, \forall s \in(0,1-t]\right\}\right) \\
& \stackrel{(\text { a) }}{=} C_{1} \backslash \theta_{t}^{-1}\left(\left\{\omega(\cdot) \in C_{1}: T_{0}(\omega)>1-t\right\}\right) \\
& =\theta_{t}^{-1}\left(\left\{\omega(\cdot) \in C_{1}: T_{0}(\omega) \leq 1-t\right\}\right),
\end{aligned}
$$

where the step (a) holds by Lemma 1, and it leads to

$$
\left\{\omega(\cdot) \in C_{1}: L(\omega) \leq t\right\}=\theta_{t}^{-1}\left(\left\{\omega(\cdot) \in C_{1}: T_{0}(\omega)>1-t\right\}\right)
$$

for every $t \in(0,1)$. Thus we arrive at

$$
\begin{equation*}
\mathbb{1}_{\{L \leq t\}}=\mathbb{1}_{\theta_{t}^{-1}\left(\left\{T_{0}>1-t\right\}\right)}=\mathbb{1}_{\left\{T_{0}>1-t\right\}} \circ \theta_{t} \tag{2}
\end{equation*}
$$

for every $t \in(0,1)$. Hence, we see that for any $t \in(0,1)$,

$$
\begin{aligned}
\mathbb{P}_{0}\{L \leq t\} & =\mathbb{E}_{0}\left[\mathbb{1}_{\{L \leq t\}}\right] \\
& \stackrel{(\mathrm{b})}{=} \mathbb{E}_{0}\left[\mathbb{1}_{\left\{T_{0}>1-t\right\}} \circ \theta_{t}\right] \\
& =\mathbb{E}_{0}\left[\mathbb{E}_{0}\left[\mathbb{1}_{\left\{T_{0}>1-t\right\}} \circ \theta_{t} \mid \mathcal{F}_{t}^{+}\right]\right] \\
& \stackrel{(\mathrm{c})}{=} \mathbb{E}_{0}\left[\mathbb{E}_{B(t)}\left[\mathbb{1}_{\left\{T_{0}>1-t\right\}}\right]\right] \\
& =\int_{\mathbb{R}} \mathrm{d} y p_{t}(0, y) \cdot \mathbb{E}_{y}\left[\mathbb{1}_{\left\{T_{0}>1-t\right\}}\right] \\
& =\int_{\mathbb{R}} p_{t}(0, y) \cdot \mathbb{P}_{y}\left\{T_{0}>1-t\right\} \mathrm{d} y,
\end{aligned}
$$

where the step (b) follows from the equation (2), and the step (c) is due to the Markov property (Theorem 7.2.1 in [1]), and this completes the proof.

Problem 2 (Exercise 7.2.4. in [1]).
(i) Let $X(f):=\lim \sup _{t \downarrow 0^{+}} \frac{B(t)}{f(t)}$, where $f:((0,+\infty), \mathcal{B}((0,+\infty))) \rightarrow((0,+\infty), \mathcal{B}((0,+\infty)))$ is a mea-
surable function. Then one can see that

$$
\begin{aligned}
X(f) & =\limsup _{t \downarrow 0^{+}} \frac{B(t)}{f(t)} \\
& =\lim _{\epsilon \downarrow 0^{+}}\left[\sup \left\{\frac{B(t)}{f(t)}: t \in(0, \epsilon)\right\}\right] \\
& =\lim _{\substack{\epsilon \nmid 0^{+} \\
\epsilon \in\left(0, \frac{1}{n}\right]}} \underbrace{\left.\sup \left\{\frac{B(t)}{f(t)}: t \in(0, \epsilon)\right\}\right]}_{\in \mathcal{F}_{\epsilon}^{0} \subseteq \mathcal{F}_{\epsilon}^{+} \subseteq \mathcal{F}_{\frac{1}{n}}^{+}} \\
& \in \mathcal{F}_{\frac{1}{n}}^{+}
\end{aligned}
$$

for every $n \in \mathbb{N}$. Therefore, $X(f)$ is $\left(\bigcap_{n=1}^{\infty} \mathcal{F}_{\frac{1}{n}}^{+}\right)$-measurable and the right-continuity of the continuous-time filtration $\left\{\mathcal{F}_{t}: t \in R_{+}\right\}$implies $\bigcap_{n=1}^{\infty} \mathcal{F}_{1}^{+}=\mathcal{F}_{0}^{+}$. Hence, $X(f)$ is \mathcal{F}_{0}^{+}-measurable.

On the other hand, we know that $\mathbb{P}_{0}{ }^{n}\left\{\tau_{+}=0\right\}=1$, where $\tau_{+}:=\inf \{t \in(0,+\infty): B(t)>0\}$, by Theorem 7.2.4 in [1]. Thus if $\omega(\cdot) \in\left\{\tau_{+}=0\right\}$, we have

$$
X(f)(\omega)=\lim _{\epsilon \downarrow 0^{+}}\left[\sup \left\{\frac{B_{t}(\omega)}{f(t)}: t \in(0, \epsilon)\right\}\right] \geq 0 .
$$

So we obtain $\mathbb{P}_{0}\{X(f) \geq 0\}=1$. Now, we employ the Blumenthal's zero-one law (Theorem 7.2.3 in [1]) to the events $\{X(f) \leq \lambda\} \in \mathcal{F}_{0}^{+}: \mathbb{P}_{0}\{X(f) \leq \lambda\} \in\{0,1\}$ for every $\lambda \in[0,+\infty]$. Let

$$
c:=\inf \left\{\lambda \in[0,+\infty]: \mathbb{P}_{0}\{X(f) \leq \lambda\}=1\right\} \in[0,+\infty] .
$$

If $c=+\infty$, we have $\mathbb{P}_{0}\{X(f)=+\infty\}=1$ and we are done. On the other hand, if $c<+\infty$, it's clear that $\mathbb{P}_{0}\left\{X(f) \leq c+\frac{1}{n}\right\}=1$ for all $n \in \mathbb{N}$. So we arrive at

$$
\begin{equation*}
\mathbb{P}_{0}\{X(f) \leq c\}=\lim _{n \rightarrow \infty} \downarrow \mathbb{P}_{0}\left\{X(f) \leq c+\frac{1}{n}\right\}=1 \tag{3}
\end{equation*}
$$

Also we know that $\mathbb{P}_{0}\left\{X(f) \leq c-\frac{1}{n}\right\}=0$ for all $n \in \mathbb{N}$, thereby one has

$$
\begin{equation*}
\mathbb{P}_{0}\{X(f)<c\}=\lim _{n \rightarrow \infty} \uparrow \mathbb{P}_{0}\left\{X(f) \leq c-\frac{1}{n}\right\}=0 \tag{4}
\end{equation*}
$$

Taking two pieces (3) and (4) collectively yields

$$
\mathbb{P}_{0}\{X(f)=c\}=\mathbb{P}_{0}\{X(f) \leq c\}-\mathbb{P}_{0}\{X(f)<c\}=1-0=1,
$$

i.e., $X(f)=\lim \sup _{t \downarrow 0^{+}} \frac{B(t)}{f(t)}=c, \mathbb{P}_{0^{-}}$-almost surely, as desired.
(ii) We claim that $\lim \sup _{t \downarrow 0^{+}} \frac{B(t)}{\sqrt{t}}=+\infty, \mathbb{P}_{0}$-almost surely. In order to prove this claim, we first consider the continuous-time stochastic process $\left\{Y(t): t \in \mathbb{R}_{+}\right\}$on $\left(C_{1}, \mathcal{C}_{1}\right)$ defined by

$$
Y(t):= \begin{cases}t B\left(\frac{1}{t}\right) & \text { if } t \in(0,+\infty) \\ 0 & \text { otherwise }\end{cases}
$$

According to Theorem 7.2.6 in [1], $\left\{Y(t): t \in \mathbb{R}_{+}\right\}$is a one-dimensional Brownian motion starting at $0 \in \mathbb{R}$ under \mathbb{P}_{0}. Also, one has

$$
\begin{equation*}
\limsup _{t \downarrow 0^{+}} \frac{B(t)}{\sqrt{t}}=\limsup _{t \downarrow 0^{+}} \sqrt{t} Y\left(\frac{1}{t}\right)=\limsup _{s \rightarrow+\infty} \frac{Y(s)}{\sqrt{s}} . \tag{5}
\end{equation*}
$$

So it suffices to prove that ${\lim \sup _{s \rightarrow+\infty} \frac{Y(s)}{\sqrt{s}}=+\infty, \mathbb{P}_{0} \text {-almost surely. To this end, we first observe for any }}$ $M \in(0,+\infty)$ that

$$
\begin{align*}
\mathbb{P}_{0}\left\{\limsup _{n \rightarrow \infty} \frac{Y(n)}{\sqrt{n}}>M\right\} & =\mathbb{P}_{0}\left\{\limsup _{n \rightarrow \infty}\left\{\frac{Y(n)}{\sqrt{n}}>M\right\}\right\} \\
& =\mathbb{P}_{0}\left\{\bigcap_{n=1}^{\infty}\left[\bigcup_{k=n}^{\infty}\left\{\frac{Y(k)}{\sqrt{k}}>M\right\}\right]\right\} \\
& =\lim _{n \rightarrow \infty} \downarrow \mathbb{P}_{0}\left\{\bigcup_{k=n}^{\infty}\left\{\frac{Y(k)}{\sqrt{k}}>M\right\}\right\} \tag{6}\\
& \geq \limsup _{n \rightarrow \infty}\left\{\frac{Y(n)}{\sqrt{n}}>M\right\} \\
& \stackrel{(\text { a) }}{=} \mathbb{P}\{Z>M\}>0
\end{align*}
$$

where $Z \sim \mathrm{~N}(0,1)$, and the step (a) holds since $\frac{Y(n)}{\sqrt{n}} \stackrel{d}{=} \mathrm{N}(0,1)$ under \mathbb{P}_{0}. We know that for any $k \in \mathbb{N}$,

$$
\frac{Y(k)}{\sqrt{k}}=\sqrt{k} B\left(\frac{1}{k}\right)
$$

is $\mathcal{F}_{\frac{1}{k}}^{+}$-measurable. So for each $n \in \mathbb{N}, \frac{Y(k)}{\sqrt{k}}$ is $\mathcal{F}_{\frac{1}{n}}^{+}$-measurable for every $k \geq n$. Therefore $\lim \sup _{k \rightarrow \infty} \frac{Y(k)}{\sqrt{k}}$ is $\mathcal{F}_{\frac{1}{n}}^{+}$-measurable for every $n \in \mathbb{N}$. From the right-continuity of the continuous-time filtration $\left\{\mathcal{F}_{t}^{+}: t \in \mathbb{R}_{+}\right\}$, we see that $\bigcap_{n=1}^{\infty} \mathcal{F}_{\frac{1}{n}}^{+}=\mathcal{F}_{0}^{+}$and thus $\lim \sup _{n \rightarrow \infty} \frac{Y(n)}{\sqrt{n}}$ is \mathcal{F}_{0}^{+}-measurable. Consequently, the Blumenthal's zero-one law (Theorem 7.2.3 in [1]) together with the inequality (6) implies that

$$
\begin{equation*}
\mathbb{P}_{0}\left\{\limsup _{n \rightarrow \infty} \frac{Y(n)}{\sqrt{n}}>M\right\}=1 \tag{7}
\end{equation*}
$$

for every $M \in(0,+\infty)$. Take

$$
\mathcal{A}:=\bigcap_{M=1}^{\infty}\left\{\limsup _{n \rightarrow \infty} \frac{Y(n)}{\sqrt{n}}>M\right\} \in \mathcal{C}_{1} .
$$

Then we can see that $\mathbb{P}_{0}\{\mathcal{A}\}=1$ and if $\omega(\cdot) \in \mathcal{A}$, then

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \frac{Y_{n}(\omega)}{\sqrt{n}}>M \tag{8}
\end{equation*}
$$

for every $M \in \mathbb{N}$. So by letting $M \rightarrow+\infty$ in (8), we obtain $\lim \sup _{n \rightarrow \infty} \frac{Y_{n}(\omega)}{\sqrt{n}}=+\infty$, which also implies

$$
\limsup _{s \rightarrow+\infty} \frac{Y_{s}(\omega)}{\sqrt{s}}=+\infty
$$

for all $\omega(\cdot) \in \mathcal{A}$. Thus $\lim \sup _{s \rightarrow+\infty} \frac{Y(s)}{\sqrt{s}}=+\infty, \mathbb{P}_{0}$-almost surely, and putting this result into (5) completes the proof.

Problem 3 (Exercise 7.3.2. in [1]).
Let $S:\left(C_{d}, \mathcal{C}_{d}\right) \rightarrow([0,+\infty], \mathcal{B}([0,+\infty]))$ and $T:\left(C_{d}, \mathcal{C}_{d}\right) \rightarrow([0,+\infty], \mathcal{B}([0,+\infty]))$ be stopping times with respect to the continuous-time filtration $\left\{\mathcal{F}_{t}: t \in \mathbb{R}_{+}\right\}$. At this point, we recall that the continuous-time filtration $\left\{\mathcal{F}_{t}: t \in \mathbb{R}_{+}\right\}$given by

$$
\mathcal{F}_{t}:=\bigcap_{\mathbf{x} \in \mathbb{R}^{d}} \sigma\left(\mathcal{F}_{t}^{+} \cup \mathcal{N}_{x}\right), \forall t \in \mathbb{R}_{+},
$$

is right-continuous, where $\mathcal{N}_{x}:=\left\{A \subseteq C_{d}: A \subseteq B\right.$ for some $B \in \mathcal{C}_{d}$ such that $\left.\mathbb{P}_{x}\{B\}=0\right\}$ denotes the collection of all $\mathbb{P}_{\mathbf{x}}$-null sets.
(1) For every $t \in \mathbb{R}_{+}$, we have

$$
\{S \wedge T \leq x\}=\underbrace{\{S \leq x\}}_{\in \mathcal{F}_{x}} \cup \underbrace{\{T \leq x\}}_{\in \mathcal{F}_{x}} \in \mathcal{F}_{x} .
$$

Thus, $S \wedge T:=\min \{S, T\}$ is a stopping time with respect to the continuous-time filtration $\left\{\mathcal{F}_{t}: t \in \mathbb{R}_{+}\right\}$.
(2) For every $t \in \mathbb{R}_{+}$, we have

$$
\{S \vee T \leq x\}=\underbrace{\{S \leq x\}}_{\in \mathcal{F}_{x}} \cap \underbrace{\{T \leq x\}}_{\in \mathcal{F}_{x}} \in \mathcal{F}_{x} .
$$

Thus, $S \vee T:=\max \{S, T\}$ is a stopping time with respect to the continuous-time filtration $\left\{\mathcal{F}_{t}: t \in \mathbb{R}_{+}\right\}$.
(3) Let $\mathbb{Q}_{+}:=\mathbb{Q} \cap \mathbb{R}_{+}=\mathbb{Q} \cap[0,+\infty)$. We can prove the following useful lemma:

Lemma 2. For every $x \in \mathbb{R}_{+}$,

$$
\begin{equation*}
\{S+T<x\}=\bigcup_{(q, r) \in \Gamma(x)}(\{S<q\} \cap\{T<r\}), \tag{9}
\end{equation*}
$$

where $\Gamma(x):=\left\{(q, r) \in \mathbb{Q}_{+}^{2}: q+r<x\right\}$.
Proof of Lemma 2.
The " \supseteq " direction is trivial. In order to verify the " \subseteq " direction, we choose an $\omega(\cdot) \in\{S+T<x\}$. As $S(\omega)<x-T(\omega)$, we may choose $q(\omega) \in \mathbb{Q} \cap(S(\omega), x-T(\omega))$ and this is possible since \mathbb{Q} is dense in \mathbb{R}. Then we have $T(\omega)<x-q(\omega)$, so we may take $r(\omega) \in \mathbb{Q} \cap(T(\omega), x-q(\omega))$ which is also possible since \mathbb{Q} is dense in \mathbb{R}. Since $q(\omega)>S(\omega) \geq 0, r(\omega)>T(\omega) \geq 0$, and $q(\omega)+r(\omega)<x$, it's clear that $(q(\omega), r(\omega)) \in \Gamma(x)$. Moreover, we see that $S(\omega)<q(\omega)$ and $T(\omega)<r(\omega)$ and this implies that

$$
\omega(\cdot) \in \bigcup_{(q, r) \in \Gamma(x)}(\{S<q\} \cap\{T<r\}),
$$

and this proves the " \subseteq " direction.

Note that $\Gamma(x)$ is countable for every $x \in \mathbb{R}_{+}$, and if $(q, r) \in \Gamma_{x}$, we have $q \leq q+r<x$ and $r \leq q+r<x$. Thus if $(q, r) \in \Gamma_{x}$, then

$$
\{S<q\} \in \mathcal{F}_{q} \subseteq \mathcal{F}_{x} \quad \text { and } \quad\{T<r\} \in \mathcal{F}_{r} \subseteq \mathcal{F}_{x}
$$

As a consequence, for every $x \in \mathbb{R}_{+}$

$$
\begin{equation*}
\{S+T<x\} \stackrel{(\text { a) }}{=} \bigcup_{(q, r) \in \Gamma(x)} \underbrace{(\{S<q\} \cap\{T<r\})}_{\in \mathcal{F}_{x}} \in \mathcal{F}_{x} \tag{10}
\end{equation*}
$$

where the step (a) follows from Lemma 2. So,

$$
\{S+T \leq x\}=\bigcap_{k=n}^{\infty} \underbrace{\left\{S+T<x+\frac{1}{k}\right\}}_{\in \mathcal{F}_{x+\frac{1}{k}} \in \mathcal{F}_{x+\frac{1}{n}}} \in \mathcal{F}_{x+\frac{1}{n}}
$$

for all $n \in \mathbb{N}$. Hence, $\{S+T \leq x\} \in \bigcap_{n=1}^{\infty} \mathcal{F}_{x+\frac{1}{n}}=\mathcal{F}_{x}$ owing to the right-continuity of the continuous-time filtration $\left\{\mathcal{F}_{t}: t \in \mathbb{R}_{+}\right\}$and this shows that $S+T$ is also a stopping time with respect to $\left\{\mathcal{F}_{t}: t \in \mathbb{R}_{+}\right\}$.

So in particular, when $t \in \mathbb{R}_{+}$is a non-random constant, it's clear that t is a stopping time with respect to $\left\{\mathcal{F}_{t}: t \in \mathbb{R}_{+}\right\}$. Therefore by employing the above statements (1)-(3), we may conclude that $S \wedge t, S \vee t$, and $S+t$ are all stopping times with respect to the right-continuous filtration $\left\{\mathcal{F}_{t}: t \in \mathbb{R}_{+}\right\}$.
Problem 4 (Exercise 7.3.3. in [1]).
Let $\left\{T_{n}\right\}_{n=1}^{\infty}$ be a sequence of stopping times with respect to the right-continuous filtration $\left\{\mathcal{F}_{t}: t \in \mathbb{R}_{+}\right\}$.
(1) For every $t \in \mathbb{R}_{+}$, we see that

$$
\left\{\sup \left\{T_{n}: n \in \mathbb{N}\right\} \leq t\right\}=\bigcap_{n=1}^{\infty} \underbrace{\left\{T_{n} \leq t\right\}}_{\in \mathcal{F}_{t}} \in \mathcal{F}_{t}
$$

thereby $\sup \left\{T_{n}: n \in \mathbb{N}\right\}$ is a stopping time with respect to the right-continuous filtration $\left\{\mathcal{F}_{t}: t \in \mathbb{R}_{+}\right\}$.
(2) For every $t \in(0,+\infty)$, we see that

$$
\left\{\inf \left\{T_{n}: n \in \mathbb{N}\right\}<t\right\}=\bigcup_{n=1}^{\infty}\left\{T_{n}<t\right\}=\bigcup_{n=1}^{\infty}(\bigcup_{k=1}^{\infty} \underbrace{\left\{T_{n} \leq t-\frac{1}{k}\right\}}_{\in \mathcal{F}_{0 \vee\left(t-\frac{1}{k}\right)} \subseteq \mathcal{F}_{t}}) \in \mathcal{F}_{t}
$$

Therefore, we arrive at

$$
\left\{\inf \left\{T_{n}: n \in \mathbb{N}\right\} \leq t\right\}=\bigcap_{k=m}^{\infty} \underbrace{\left\{\inf \left\{T_{n}: n \in \mathbb{N}\right\}<t+\frac{1}{k}\right\}}_{\in \mathcal{F}_{t+\frac{1}{k}} \subseteq \mathcal{F}_{t+\frac{1}{m}}} \in \mathcal{F}_{t+\frac{1}{m}}
$$

for every $m \in \mathbb{N}$, so one has $\left\{\inf \left\{T_{n}: n \in \mathbb{N}\right\} \leq t\right\} \in \bigcap_{m=1}^{\infty} \mathcal{F}_{t+\frac{1}{m}}=\mathcal{F}_{t}$ for any $t \in \mathbb{R}_{+}$by the right-continuity of the continuous-time filtration $\left\{\mathcal{F}_{t}: t \in \mathbb{R}_{+}\right\}$. Hence, $\inf \left\{T_{n}: n \in \mathbb{N}\right\}$ is also a stopping time with respect to the right-continuous filtration $\left\{\mathcal{F}_{t}: t \in \mathbb{R}_{+}\right\}$.
(3) By the statement (1), $\sup \left\{T_{k}: k \geq n\right\}$ is a stopping time with respect to the right-continuous filtration $\left\{\mathcal{F}_{t}: t \in \mathbb{R}_{+}\right\}$for every $n \in \mathbb{N}$. Therefore,

$$
\limsup _{n \rightarrow \infty} T_{n}=\lim _{n \rightarrow \infty} \downarrow\left(\sup \left\{T_{k}: k \geq n\right\}\right)
$$

is also a stopping time with respect to $\left\{\mathcal{F}_{t}: t \in \mathbb{R}_{+}\right\}$due to Theorem 7.3.2 in [1].
(4) By the statement (2), $\inf \left\{T_{k}: k \geq n\right\}$ is a stopping time with respect to the right-continuous filtration $\left\{\mathcal{F}_{t}: t \in \mathbb{R}_{+}\right\}$for every $n \in \mathbb{N}$. Therefore,

$$
\liminf _{n \rightarrow \infty} T_{n}=\lim _{n \rightarrow \infty} \uparrow\left(\inf \left\{T_{k}: k \geq n\right\}\right)
$$

is also a stopping time with respect to $\left\{\mathcal{F}_{t}: t \in \mathbb{R}_{+}\right\}$owing to Theorem 7.3.3 in [1].
Problem 5 (Exercise 7.3.5. in [1]).
Let S and T be stopping times with respect to the right-continuous filtration $\left\{\mathcal{F}_{t}: t \in \mathbb{R}_{+}\right\}$. We begin with the following useful lemma:

Lemma 3. Let $\tau:\left(C_{d}, \mathcal{C}_{d}\right) \rightarrow([0,+\infty], \mathcal{B}([0,+\infty]))$ be a stopping time with respect to the right-continuous filtration $\left\{\mathcal{F}_{t}: t \in \mathbb{R}_{+}\right\}$. Then,

$$
\begin{equation*}
\mathcal{F}_{\tau}=\left\{A \in \mathcal{C}_{d}: A \cap\{T<t\} \in \mathcal{F}_{t}, \forall t \in(0,+\infty)\right\} . \tag{11}
\end{equation*}
$$

Proof of Lemma 3.
For the " \subseteq " direction, we choose any $A \in \mathcal{F}_{\tau}$. Then for every $t \in(0,+\infty)$, one has

$$
A \cap\{\tau<t\}=A \cap\left(\bigcup_{n=1}^{\infty}\left\{\tau \leq t-\frac{1}{n}\right\}\right)=\bigcup_{n=1}^{\infty} \underbrace{\left(A \cap\left\{\tau \leq t-\frac{1}{n}\right\}\right.}_{\in \mathcal{F}_{0 \vee\left(t-\frac{1}{n}\right)} \subseteq \mathcal{F}_{t}}) \in \mathcal{F}_{t}
$$

For the " \supseteq " direction, we assume that $A \in \mathcal{C}_{d}$ is an event such that $A \cap\{\tau<t\} \in \mathcal{F}_{t}$ for all $t \in(0,+\infty)$. We now fix any $t \in \mathbb{R}_{+}$. Then we have

$$
A \cap\{\tau \leq t\}=A \cap\left(\bigcap_{k=n}^{\infty}\left\{\tau<t+\frac{1}{k}\right\}\right)=\bigcap_{k=n}^{\infty} \underbrace{\left(A \cap\left\{\tau<t+\frac{1}{k}\right\}\right)}_{\in \mathcal{F}_{t+\frac{1}{k}} \subseteq \in \mathcal{F}_{t+\frac{1}{n}}} \in \mathcal{F}_{t+\frac{1}{n}}
$$

for every $n \in \mathbb{N}$. So, $A \cap\{\tau \leq t\} \in \bigcap_{n=1}^{\infty} \mathcal{F}_{t+\frac{1}{n}}=\mathcal{F}_{t}$ due to the right-continuity of the continuous-time filtration $\left\{\mathcal{F}_{t}: t \in \mathbb{R}_{+}\right\}$. Hence, $A \in \mathcal{F}_{\tau}$ and this completes the proof of Lemma 3.
(1) We first consider the event $\{S<T\}$.

Claim 1. For every $s \in(0,+\infty)$, we have

$$
\begin{equation*}
\{S<T\} \cap\{S<s\}=\bigcup_{q \in \mathbb{Q} \cap[0, s]}(\{S<q\} \cap\{T>q\}) . \tag{12}
\end{equation*}
$$

Proof of Claim 1.
The direction " \supseteq " of the equality (12) is trivial. Now suppose that $S(\omega)<T(\omega)$ and $S(\omega)<s$. Then we have $S(\omega)<\min \{s, T(\omega)\}$ and thus we may choose a rational number $q(\omega) \in \mathbb{Q} \cap(S(\omega), \min \{s, T(\omega)\})$ which is possible since \mathbb{Q} is dense in \mathbb{R}. It's clear that $q(\omega) \in \mathbb{Q} \cap[0, s]$ and

$$
S(\omega)<q(\omega)<\min \{s, T(\omega)\} \leq s \quad \text { and } \quad T(\omega) \geq \min \{s, T(\omega)\}>q(\omega) .
$$

Hence, we arrive at $\omega(\cdot) \in \bigcup_{q \in \mathbb{Q} \cap[0, s]}(\{S<q\} \cap\{T>q\})$ and this proves the " \subseteq " direction.

We note that for every $q \in \mathbb{Q} \cap[0, s]$,

$$
\begin{align*}
& \{S<q\}=\bigcup_{n=1}^{\infty} \underbrace{\left\{S \leq q-\frac{1}{n}\right\}}_{\in \mathcal{F}_{\mathrm{ov}\left(q-\frac{1}{n}\right)} \subseteq \mathcal{F}_{q}} \in \mathcal{F}_{q} \subseteq \mathcal{F}_{s} ; \tag{13}\\
& \{T>q\}=C_{d} \backslash\{T \leq q\} \in \mathcal{F}_{q} \subseteq \mathcal{F}_{s} .
\end{align*}
$$

Thus for any $s \in(0,+\infty)$, one has

$$
\{S<T\} \cap\{S<s\} \stackrel{(\mathrm{a})}{=} \bigcup_{q \in \mathbb{Q} \cap[0, s]} \underbrace{(\{S<q\} \cap\{T>q\})}_{\in \mathcal{F}_{s}} \stackrel{(\mathrm{~b})}{\in} \mathcal{F}_{s},
$$

where the step (a) is due to Claim 1, and the step (b) follows from the observation (13). So by Lemma 3, we see that $\{S<T\} \in \mathcal{F}_{S}$.
(2) For every $s \in(0,+\infty)$, we define $\mathcal{I}(s):=\{(q, r) \in \mathbb{Q} \times \mathbb{Q}: 0 \leq r<q \leq s\}$.

Claim 2. For every $s \in(0,+\infty)$, we have

$$
\begin{equation*}
\{S>T\} \cap\{S<s\}=\bigcup_{(q, r) \in \mathcal{I}(s)}(\{r<S<q\} \cap\{T<r\}) . \tag{14}
\end{equation*}
$$

Proof of Claim 2.
The direction " \supseteq " of the equality (14) is obvious. Suppose $T(\omega)<S(\omega)<s$. Since \mathbb{Q} is dense in \mathbb{R}, we can take $q(\omega) \in \mathbb{Q} \cap(S(\omega), s)$ and $r(\omega) \in \mathbb{Q} \cap(T(\omega), S(\omega))$. Then we have

$$
0 \leq T(\omega)<r(\omega)<S(\omega)<q(\omega)<s
$$

and this implies that $(q(\omega), r(\omega)) \in \mathcal{I}(s)$. Thus $\omega(\cdot) \in \bigcup_{(q, r) \in \mathcal{I}(s)}(\{r<S<q\} \cap\{T<r\})$ and this establishes the " \subseteq " direction of the equality (14).

One can observe that for every $(q, r) \in \mathcal{I}(s)$,

$$
\begin{align*}
\{r<S<q\} & =\{S<q\} \backslash\{S \leq r\}= \tag{15}\\
\{T<r\} & =\bigcup_{n=1}^{\infty} \underbrace{\left\{T \leq r-\frac{1}{n}\right\}}_{\in \mathcal{F}_{0 \vee\left(r-\frac{1}{n}\right)}^{\infty} \subseteq \mathcal{F}_{r}} \in \underbrace{\left\{S \leq q-\frac{1}{n}\right\}}_{\in \mathcal{F}_{0 \vee\left(q-\frac{1}{n}\right)} \subseteq \mathcal{F}_{s}}) \backslash \underbrace{\{S \leq r\}}_{\in \mathcal{F}_{r} \subseteq \mathcal{F}_{s}} \in \mathcal{F}_{s} .
\end{align*}
$$

Thus for every $s \in(0,+\infty)$, one has

$$
\{S>T\} \cap\{S<s\} \stackrel{(\mathrm{c})}{=} \bigcup_{(q, r) \in \mathcal{I}(s)} \underbrace{(\{r<S<q\} \cap\{T<r\})}_{\in \mathcal{F}_{s}} \stackrel{(\mathrm{~d})}{\in} \mathcal{F}_{s}
$$

where the step (c) holds by Claim 2, and the step (d) makes use of the observation (15). Hence by Lemma $2,\{S>T\} \in \mathcal{F}_{S}$.
(3) $\{S=T\}=C_{d} \backslash(\{S<T\} \cup\{S>T\}) \in \mathcal{F}_{S}$ by the above statements (1) and (2). Furthermore, by interchanging the roles between S and T, we see that $\{S<T\},\{S>T\}$, and $\{S=T\}$ belong to the stopped σ-field \mathcal{F}_{T} associated to the stopping time T with respect to the right-continuous filtration $\left\{\mathcal{F}_{t}: t \in \mathbb{R}_{+}\right\}$. This completes the proof of all the given statements.

References

[1] Rick Durrett. Probability: theory and examples, volume 49. Cambridge university press, 2019.
[2] Achim Klenke. Probability theory: a comprehensive course. Springer Science \& Business Media, 2013.
[3] Bernt Øksendal. Stochastic differential equations. In Stochastic differential equations, pages 65-84. Springer, 2003.

