MAS651 Theory of Stochastic Processes Homework \#7

20150597 Jeonghwan Lee

Department of Mathematical Sciences, KAIST

May 5, 2021

Throughout this homework, let \mathbb{Z}_{+}denote the set of all non-negative integers, \mathbb{R}_{+}be the set of all nonnegative real numbers, and $[a: b]:=\{a, a+1, \cdots, b-1, b\}$ for $a, b \in \mathbb{Z}$ with $a \leq b$. We also write $[n]:=[1: n]$ for $n \in \mathbb{N}$. Moreover, \biguplus denotes the disjoint union, and given a set A and $k \in \mathbb{Z}_{+},\binom{A}{k}:=\{B \subseteq A:|B|=k\}$. Also, we use the symbol \mathbb{S} instead of S to denote the underlying state space of stochastic processes. Moreover, let $(\Omega, \mathcal{F}, \mathbb{P})$ denote the underlying probability space and $\left\{B(t): t \in \mathbb{R}_{+}\right\}$refers to a standard one-dimensional Brownian motion defined on $(\Omega, \mathcal{F}, \mathbb{P})$, i.e., a one-dimensional Brownian motion defined on $(\Omega, \mathcal{F}, \mathbb{P})$ with $B(0)=0$.

Problem 1 (Exercise 7.1.1. in [1]).
We know that $B(s)$ and $B(t)-B(s)$ are independent and

$$
B(s) \sim \mathrm{N}(0, s) \quad \text { and } \quad B(t)-B(s) \sim \mathrm{N}(0, t-s),
$$

where $\mathbf{N}\left(\mu, \sigma^{2}\right)$ denotes the normal distribution with mean $\mu \in \mathbb{R}$ and variance $\sigma^{2} \in(0,+\infty)$. So the joint pdf of $(B(s), B(t)-B(s))$ is given by

$$
f(x, y):=\frac{1}{\sqrt{2 \pi s}} \exp \left(-\frac{x^{2}}{2 s}\right) \cdot \frac{1}{\sqrt{2 \pi(t-s)}} \exp \left(-\frac{y^{2}}{2(t-s)}\right)=\frac{1}{2 \pi \sqrt{s(t-s)}} \exp \left\{-\frac{1}{2}\left(\frac{x^{2}}{s}+\frac{y^{2}}{t-s}\right)\right\}
$$

for $(x, y) \in \mathbb{R}^{2}$. Hence, we have for every $0<s<t<+\infty$,

$$
\begin{aligned}
\mathbb{P}\{B(s)>0, B(t)>0\} & =\mathbb{P}\{B(s)>0,\{B(t)-B(s)\}+B(s)>0\} \\
& =\int_{\left\{(x, y) \in \mathbb{R}^{2}: x>0, x+y>0\right\}} f(x, y) \mathrm{d} x \mathrm{~d} y \\
& \stackrel{(\text { a })}{=} \int_{\left\{(u, v) \in \mathbb{R}^{2}: u>0, \sqrt{s} u+\sqrt{t-s} v>0\right\}} f(\sqrt{s} u, \sqrt{t-s} v) \cdot \sqrt{s(t-s)} \mathrm{d} u \mathrm{~d} v \\
& =\frac{1}{2 \pi} \int_{\left\{(u, v) \in \mathbb{R}^{2}: u>0, \sqrt{s} u+\sqrt{t-s} v>0\right\}} \exp \left\{-\frac{1}{2}\left(u^{2}+v^{2}\right)\right\} \mathrm{d} u \mathrm{~d} v \\
& \stackrel{(\mathrm{~b})}{=} \frac{1}{2 \pi} \int_{\left\{(r, \theta) \in[0,+\infty) \times[0,2 \pi): r>0,-\arctan \left(\sqrt{\frac{s}{t-s}}\right)<\theta<\frac{\pi}{2}\right\}} \exp \left(-\frac{1}{2} r^{2}\right) \cdot r \mathrm{~d} r \mathrm{~d} \theta \\
& \stackrel{(\mathrm{c})}{=} \frac{1}{2 \pi}\left(\int_{0}^{\infty} r \exp \left(-\frac{1}{2} r^{2}\right) \mathrm{d} r\right)\left(\int_{-\arctan \left(\sqrt{\frac{s}{2}}\right)}^{\frac{\pi}{t-s}} \mathrm{~d} \theta\right) \\
& =\frac{1}{4}+\frac{1}{2 \pi} \arctan \left(\sqrt{\frac{s}{t-s}}\right) \\
& =\frac{1}{4}+\frac{1}{2 \pi} \arcsin \left(\sqrt{\frac{s}{t}}\right)
\end{aligned}
$$

where the steps (a)-(c) can be justified as follows:
(a) change of variables with $(x, y)=(\sqrt{s} u, \sqrt{t-s} v)$;
(b) change of variables with $(u, v)=(r \cos \theta, r \sin \theta)$;
(c) the Fubini-Tonelli's theorem.

Problem 2 (Exercise 7.1.4. in [1]).
We begin with some formal definitions. Let $(\mathbb{S}, \mathcal{S})$ be a measurable space and \mathbb{T} be any index set.
Definition 1. Let $\mathbb{S}^{\mathbb{T}}:=\{\omega(\cdot): \mathbb{T} \rightarrow \mathbb{S}\}$ and $\mathcal{S}^{\mathbb{T}}$ be the σ-field on $\mathbb{S}^{\mathbb{T}}$ generated by the collection of cylindrical sets

$$
\left\{\left\{\omega(\cdot) \in \mathbb{S}^{\mathbb{T}}: \omega\left(t_{1}\right) \in A_{1}, \omega\left(t_{2}\right) \in A_{2}, \cdots, \omega\left(t_{n}\right) \in A_{n}\right\}: n \in \mathbb{N}, t_{1}, t_{2}, \cdots, t_{n} \in \mathbb{T}, A_{1}, A_{2}, \cdots, A_{n} \in \mathcal{S}\right\} .
$$

We call $\mathcal{S}^{\mathbb{T}}$ the product σ-field or the cylindrical σ-field on $\mathbb{S}^{\mathbb{T}}$.
Definition 2. For any subsets $I \subseteq J \subseteq \mathbb{T}$, let $\pi_{I}^{J}: \mathbb{S}^{J} \rightarrow \mathbb{S}^{I}$ denote the canonical projection map $\left.f \mapsto f\right|_{I}$. Let $\Sigma(\mathbb{T})$ be the collection of all countable subsets of \mathbb{T}. Given any $\mathbb{C} \in \Sigma(\mathbb{T})$ and $E \in \mathcal{S}^{\mathbb{C}}$, we define

$$
[\mathbb{C}, E]:=\left\{\omega(\cdot) \in \mathbb{S}^{\mathbb{T}}: \pi_{\mathbb{C}}^{\mathbb{T}}(\omega)=(\omega(t): t \in \mathbb{C}) \in E\right\} \subseteq \mathbb{S}^{\mathbb{T}}
$$

We say that a subset $A \subseteq \mathbb{S}^{\mathbb{T}}$ has a countable representation if $A=[\mathbb{C}, E]$ for some $\mathbb{C} \in \Sigma(\mathbb{T})$ and $E \in \mathcal{S}^{\mathbb{C}}$. Let $C R\left(\mathbb{S}^{\mathbb{T}}\right)$ denote the collection of all subsets of $\mathbb{S}^{\mathbb{T}}$ which has a countable representation.

Lemma 1. $\operatorname{CR}\left(\mathbb{S}^{\mathbb{T}}\right)$ forms a σ-field on $\mathbb{S}^{\mathbb{T}}$.
Proof of Lemma 1.
To begin with, it's clear that \varnothing and $\mathbb{S}^{\mathbb{T}}$ belong to $\mathrm{CR}\left(\mathbb{S}^{\mathbb{T}}\right)$.
(i) If $A \in \operatorname{CR}\left(\mathbb{S}^{\mathbb{T}}\right)$, then $A=[\mathbb{C}, E]$ for some $\mathbb{C} \in \Sigma(\mathbb{T})$ and $E \in \mathcal{S}^{\mathbb{C}}$. Then, $\mathbb{S}^{\mathbb{T}} \backslash A=\left[\mathbb{C}, \mathbb{S}^{\mathbb{C}} \backslash E\right] \in \operatorname{CR}\left(\mathbb{S}^{\mathbb{T}}\right)$.
(ii) Let $\left\{A_{n}\right\}_{n=1}^{\infty}$ be any sequence in $\operatorname{CR}\left(\mathbb{S}^{\mathbb{T}}\right)$. Then we may write $A_{n}=\left[\mathbb{C}_{n}, E_{n}\right]$ for some $\mathbb{C}_{n} \in \Sigma(\mathbb{T})$ and $E_{n} \in \mathcal{S}^{\mathbb{C}_{n}}$ for each $n \in \mathbb{N}$. Set $\mathbb{C}:=\bigcup_{n=1}^{\infty} \mathbb{C}_{n} \in \Sigma(\mathbb{T})$. Given any subsets $I \subseteq J \subseteq \mathbb{T}$, every pre-image of a cylindrical set in \mathbb{S}^{I} under the canonical projection map $\pi_{I}^{J}:\left(\mathbb{S}^{J}, \mathcal{S}^{J}\right) \rightarrow\left(\mathbb{S}^{I}, \mathcal{S}^{I}\right)$ is also a cylindrical set in \mathbb{S}^{J}. Therefore, the canonical projection map $\pi_{I}^{J}:\left(\mathbb{S}^{J}, \mathcal{S}^{J}\right) \rightarrow\left(\mathbb{S}^{I}, \mathcal{S}^{I}\right)$ is measurable. So we find that $\left(\pi_{\mathbb{C}_{n}}^{\mathbb{C}}\right)^{-1}\left(E_{n}\right) \in \mathcal{S}^{\mathbb{C}}$ for all $n \in \mathbb{N}$. Let $D:=\bigcup_{n=1}^{\infty}\left(\pi_{\mathbb{C}_{n}}^{\mathbb{C}}\right)^{-1}\left(E_{n}\right) \in \mathcal{S}^{\mathbb{C}}$. Then for every $\omega(\cdot) \in \mathbb{S}^{\mathbb{T}}$, the following holds:

$$
\begin{aligned}
\omega(\cdot) \in \bigcup_{n=1}^{\infty} A_{n} & \Leftrightarrow \omega(\cdot) \in A_{n} \text { for some } n \in \mathbb{N} \\
& \Leftrightarrow\left(\pi_{\mathbb{C}_{n}}^{\mathbb{T}}\right)(\omega) \in E_{n} \text { for some } n \in \mathbb{N} \\
& \stackrel{\text { a) }}{\Leftrightarrow}\left(\pi_{\mathbb{C}}^{\mathbb{T}}\right)(\omega) \in\left(\pi_{\mathbb{C}_{n}}^{\mathbb{C}}\right)^{-1}\left(E_{n}\right) \text { for some } n \in \mathbb{N} \\
& \Leftrightarrow\left(\pi_{\mathbb{C}}^{\mathbb{T}}\right)(\omega) \in D \\
& \Leftrightarrow \omega(\cdot) \in[\mathbb{C}, D],
\end{aligned}
$$

where the step (a) holds since $\pi_{\mathbb{C}_{n}}^{\mathbb{T}}=\left(\pi_{\mathbb{C}_{n}}^{\mathbb{C}}\right) \circ\left(\pi_{\mathbb{C}}^{\mathbb{T}}\right)$ for every $n \in \mathbb{N}$. Hence, we have $\bigcup_{n=1}^{\infty} A_{n}=[\mathbb{C}, D] \in$ $C R\left(\mathbb{S}^{\mathbb{T}}\right)$.

To sum up, we conclude that $\operatorname{CR}\left(\mathbb{S}^{\mathbb{T}}\right)$ is a σ-field on $\mathbb{S}^{\mathbb{T}}$.

Now we claim that $\mathcal{S}^{\mathbb{T}}=\mathrm{CR}\left(\mathbb{S}^{\mathbb{T}}\right)$. Choose any cylindrical set in $\mathbb{S}^{\mathbb{T}}$,

$$
A=\left\{\omega(\cdot) \in \mathbb{S}^{\mathbb{T}}: \omega\left(t_{1}\right) \in A_{1}, \omega\left(t_{2}\right) \in A_{2}, \cdots, \omega\left(t_{n}\right) \in A_{n}\right\}
$$

where $t_{1}, t_{2}, \cdots, t_{n} \in \mathbb{T}$ are distinct indices, and $A_{1}, A_{2}, \cdots, A_{n} \in \mathcal{S}$. Let \mathbb{C} be any countable subset of \mathbb{T} containing $\left\{t_{1}, t_{2}, \cdots, t_{n}\right\}$, and

$$
E:=\bigcap_{j=1}^{n}\left(\pi_{\left\{t_{j}\right\}}^{\mathbb{C}}\right)^{-1}\left(A_{j}\right)=\left\{f \in \mathbb{S}^{\mathbb{C}}: f\left(t_{1}\right) \in A_{1}, f\left(t_{2}\right) \in A_{2}, \cdots, f\left(t_{n}\right) \in A_{n}\right\} \in \mathcal{S}^{\mathbb{C}} .
$$

Then, $A=[\mathbb{C}, E] \in \operatorname{CR}\left(\mathbb{S}^{\mathbb{T}}\right)$ and since $\mathrm{CR}\left(\mathbb{S}^{\mathbb{T}}\right)$ is a σ-field on $\mathbb{S}^{\mathbb{T}}(\because$ Lemma 1$)$ containing all cylindrical sets in $\mathbb{S}^{\mathbb{T}}$, we deduce $\mathcal{S}^{\mathbb{T}} \subseteq \mathrm{CR}\left(\mathbb{S}^{\mathbb{T}}\right)$.

Conversely, let $A \in \mathrm{CR}\left(\mathbb{S}^{\mathbb{T}}\right)$. Then,

$$
A=[\mathbb{C}, E]=\left(\pi_{\mathbb{C}}^{\mathbb{T}}\right)^{-1}(E) \in \mathcal{S}^{\mathbb{T}}
$$

since the canonical projection map $\pi_{\mathbb{C}}^{\mathbb{T}}:\left(\mathbb{S}^{\mathbb{T}}, \mathcal{S}^{\mathbb{T}}\right) \rightarrow\left(\mathbb{S}^{\mathbb{C}}, \mathcal{S}^{\mathbb{C}}\right)$ is measurable. Thus, we have $\operatorname{CR}\left(\mathbb{S}^{\mathbb{T}}\right) \subseteq \mathcal{S}^{\mathbb{T}}$ and this completes the proof of our desired claim $\mathcal{S}^{\mathbb{T}}=\operatorname{CR}\left(\mathbb{S}^{\mathbb{T}}\right)$. Employing this result to the case for which $(\mathbb{S}, \mathcal{S})=(\mathbb{R}, \mathcal{B}(\mathbb{R}))$, where $\mathcal{B}(\mathbb{R})=\mathcal{R}$ denotes the Borel σ-field on \mathbb{R}, and $\mathbb{T}=\mathbb{R}_{+}=[0,+\infty)$, we see that $\mathcal{R}^{[0,+\infty)}=\mathcal{F}_{0}$ and obtain the desired result.

Problem 3 (Exercise 7.1.5. in [1]).
To begin with, we fix any $k \in \mathbb{N}$ and an exponent $\gamma \in\left(\frac{1}{2}+\frac{1}{k},+\infty\right)$. For any given $C, T \in(0,+\infty)$, we consider the event
$\mathcal{A}_{n}(C, T):=\left\{\omega \in \Omega:\right.$ there is an $s \in[0, T]$ s.t. $\left|B_{t}(\omega)-B_{s}(\omega)\right| \leq C|t-s|^{\gamma}$ whenever $\left.|t-s| \leq k \cdot \frac{T}{n}\right\} \in \mathcal{F}$, and define

$$
Y_{n, l}:=\max \left\{\left|B\left((l+j) \cdot \frac{T}{n}\right)-B\left((l+j-1) \cdot \frac{T}{n}\right)\right|: j \in[0: k-1]\right\}
$$

for each $l \in[n-k+1]$, and

$$
\mathcal{B}_{n}(C, T):=\left\{\omega \in \Omega: \text { there exists an } l \in[n-k+1] \text { s.t. }\left|Y_{n, l}(\omega)\right| \leq C\left(\frac{T}{n}\right)^{\gamma}\left\{k^{\gamma}+(k-1)^{\gamma}\right\}\right\} \in \mathcal{F} .
$$

Claim 1. For any $C, T \in(0,+\infty)$, we have $\mathcal{A}_{n}(C, T) \subseteq \mathcal{B}_{n}(C, T)$.
Proof of Claim 1.
If $\omega \in \mathcal{A}_{n}(C, T)$, then there exists an $s \in[0, T]$ such that

$$
\begin{equation*}
\left|B_{t}(\omega)-B_{s}(\omega)\right| \leq C|t-s|^{\gamma} \tag{1}
\end{equation*}
$$

for every $t \in\left[s-k \cdot \frac{T}{n}, s+k \cdot \frac{T}{n}\right]$. Here, we may consider the following two cases:
Case \#1. $s \in\left[0,(n-k+1) \cdot \frac{T}{n}\right]$: Then $s \in\left[(l-1) \cdot \frac{T}{n}, l \cdot \frac{T}{n}\right]$ for some $l \in[n-k+1]$. Since we have

$$
\begin{align*}
\left|(l+j-1) \cdot \frac{T}{n}-s\right| & \leq j \cdot \frac{T}{n} \leq(k-1) \cdot \frac{T}{n} \tag{2}\\
\left|(l+j) \cdot \frac{T}{n}-s\right| & \leq(j+1) \cdot \frac{T}{n} \leq k \cdot \frac{T}{n}
\end{align*}
$$

for every $j \in[0: k-1]$, we obtain from the bound (1) that

$$
\begin{aligned}
\left|B_{(l+j) \cdot \frac{T}{n}}(\omega)-B_{(l+j-1) \cdot \frac{T}{n}}(\omega)\right| & \stackrel{(\mathrm{a})}{\leq}\left|B_{(l+j) \cdot \frac{T}{n}}(\omega)-B_{s}(\omega)\right|+\left|B_{s}(\omega)-B_{(l+j-1) \cdot \frac{T}{n}}(\omega)\right| \\
& \leq C\left|(l+j) \cdot \frac{T}{n}-s\right|^{\gamma}+C\left|s-(l+j-1) \cdot \frac{T}{n}\right|^{\gamma} \\
& \stackrel{\text { (b) }}{\leq} C\left(\frac{T}{n}\right)^{\gamma}\left\{k^{\gamma}+(k-1)^{\gamma}\right\},
\end{aligned}
$$

where the step (a) is due to the triangle inequality, and the step (b) follows from the bound (2). Thus we arrive at

$$
\left|Y_{n, l}(\omega)\right|=\max \left\{\left|B_{(l+j) \cdot \frac{T}{n}}(\omega)-B_{(l+j-1) \cdot \frac{T}{n}}(\omega)\right|: j \in[0: k-1]\right\} \leq C\left(\frac{T}{n}\right)^{\gamma}\left\{k^{\gamma}+(k-1)^{\gamma}\right\} .
$$

Case \#2. $s \in\left((n-k+1) \cdot \frac{T}{n}, T\right]:$ Since $(n-k+1+j) \cdot \frac{T}{n} \in\left[(n-k+1) \cdot \frac{T}{n}, T\right]$ and $(n-k+j) \cdot \frac{T}{n} \in$ $\left[(n-k) \cdot \frac{T}{n}, T\right]$ for every $j \in[0: k-1]$, we see that

$$
\begin{align*}
\left|(n-k+j) \cdot \frac{T}{n}-s\right| & \leq k \cdot \frac{T}{n} \\
\left|(n-k+1+j) \cdot \frac{T}{n}-s\right| & \leq(k-1) \cdot \frac{T}{n} \tag{3}
\end{align*}
$$

for every $j \in[0: k-1]$. So we may deduce

$$
\begin{aligned}
\left|B_{(n-k+1+j) \cdot \frac{T}{n}}(\omega)-B_{(n-k+j) \cdot \frac{T}{n}}(\omega)\right| & \leq \frac{(\mathrm{c})}{\leq}\left|B_{(n-k+1+j) \cdot \frac{T}{n}}(\omega)-B_{s}(\omega)\right|+\left|B_{s}(\omega)-B_{(n-k+j) \cdot \frac{T}{n}}(\omega)\right| \\
& \leq C\left|(n-k+1+j) \cdot \frac{T}{n}-s\right|^{\gamma}+C\left|s-(n-k+j) \cdot \frac{T}{n}\right|^{\gamma} \\
& \text { (d) } C\left(\frac{T}{n}\right)^{\gamma}\left\{k^{\gamma}+(k-1)^{\gamma}\right\},
\end{aligned}
$$

where the step (c) makes use of the triangle inequality, and the step (d) follows from the fact (3). Therefore, one has

$$
\left|Y_{n, n-k+1}(\omega)\right|=\max \left\{\left|B_{(n-k+1+j) \cdot \frac{T}{n}}(\omega)-B_{(n-k+j) \cdot \frac{T}{n}}(\omega)\right|: j \in[0: k-1]\right\} \leq C\left(\frac{T}{n}\right)^{\gamma}\left\{k^{\gamma}+(k-1)^{\gamma}\right\}
$$

To sum up, we conclude that $\omega \in \mathcal{B}_{n}(C, T)$ as desired.

Thanks to Claim 1, we arrive at

$$
\begin{align*}
& \quad \mathbb{P}\left\{\mathcal{A}_{n}(C, T)\right\} \\
& \leq \mathbb{P}\left\{\mathcal{B}_{n}(C, T)\right\} \\
& =\mathbb{P}\left\{\bigcup_{l=1}^{n-k+1}\left\{\max \left\{\left|B\left((l+j) \cdot \frac{T}{n}\right)-B\left((l+j-1) \cdot \frac{T}{n}\right)\right|: j \in[0: k-1]\right\} \leq C\left(\frac{T}{n}\right)^{\gamma}\left\{k^{\gamma}+(k-1)^{\gamma}\right\}\right\}\right\} \\
& \stackrel{\text { (e) }}{\leq} \sum_{l=1}^{n-k+1} \mathbb{P}\left\{\bigcap_{j=0}^{k-1}\left\{\left|B\left((l+j) \cdot \frac{T}{n}\right)-B\left((l+j-1) \cdot \frac{T}{n}\right)\right| \leq C\left(\frac{T}{n}\right)^{\gamma}\left\{k^{\gamma}+(k-1)^{\gamma}\right\}\right\}\right\} \\
& \stackrel{(\mathrm{f})}{=} \sum_{l=1}^{n-k+1}\left[\prod_{j=0}^{k-1} \mathbb{P}\left\{\left|B\left((l+j) \cdot \frac{T}{n}\right)-B\left((l+j-1) \cdot \frac{T}{n}\right)\right| \leq C\left(\frac{T}{n}\right)^{\gamma}\left\{k^{\gamma}+(k-1)^{\gamma}\right\}\right\}\right] \\
& \stackrel{\text { (g) }}{=} \sum_{l=1}^{n-k+1}\left[\prod_{j=0}^{k-1} \mathbb{P}\left\{\left|B\left(\frac{T}{n}\right)\right| \leq C\left(\frac{T}{n}\right)^{\gamma}\left\{k^{\gamma}+(k-1)^{\gamma}\right\}\right\}\right] \\
& \stackrel{\text { (h) }}{\leq} n\left[\mathbb{P}\left\{|Z| \leq C\left(\frac{T}{n}\right)^{\gamma-\frac{1}{2}}\left\{k^{\gamma}+(k-1)^{\gamma}\right\}\right\}\right]^{k} \\
& \leq n\left[\int_{-C\left(\frac{T}{n}\right)^{\gamma-\frac{1}{2}}\left\{k^{\gamma \gamma}+(k-1)^{\gamma}\right\}}^{C} \frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{1}{2} x^{2}\right) \mathrm{d} x\right]^{\gamma-\frac{1}{2}}\left\{k^{\gamma}+(k-1)^{\gamma}\right\} \\
& \text { (i) } \\
& =n\left[\frac{2 C\left\{k^{\gamma}+(k-1)^{\gamma}\right\}\left(\frac{T}{n}\right)^{\gamma-\frac{1}{2}}}{\sqrt{2 \pi}}\right]^{k} \tag{4}\\
& = \\
& =\left[\frac{2 C\left\{k^{\gamma}+(k-1)^{\gamma}\right\} T^{\gamma-\frac{1}{2}}}{\sqrt{2 \pi}}\right]^{k} \cdot n^{-k\left(\gamma-\frac{1}{2}-\frac{1}{k}\right)},
\end{align*}
$$

where $Z \sim \mathrm{~N}(0,1)$, and the above steps (e)-(i) can be validated as follows:
(e) the union bound;
(f) $\left\{B(t): t \in \mathbb{R}_{+}\right\}$has independent increments;
(g) $B\left((l+j) \cdot \frac{T}{n}\right)-B\left((l+j-1) \cdot \frac{T}{n}\right) \stackrel{d}{=} B\left(\frac{T}{n}\right) \sim \mathrm{N}\left(0, \frac{T}{n}\right)$ for every $l \in[n-k+1]$ and $j \in[0: k-1]$;
(h) $B\left(\frac{T}{n}\right) \stackrel{d}{=} \sqrt{\frac{T}{n}} Z$;
(i) $\frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{x^{2}}{2}\right) \leq \frac{1}{\sqrt{2 \pi}}$ for all $x \in \mathbb{R}$.

Since the exponent γ satisfies $\gamma>\frac{1}{2}+\frac{1}{k}$, by letting $n \rightarrow \infty$ in the bound (4) we obtain for every $C, T>0$,

$$
\begin{equation*}
0=\lim _{n \rightarrow \infty} \mathbb{P}\left\{\mathcal{A}_{n}(C, T)\right\} \stackrel{(\mathrm{j})}{=} \mathbb{P}\left\{\bigcup_{n=1}^{\infty} \mathcal{A}_{n}(C, T)\right\} \tag{5}
\end{equation*}
$$

where the step (j) follows from the fact that $\left\{\mathcal{A}_{n}(C, T)\right\}_{n=1}^{\infty}$ is a non-decreasing sequence of events with respect to the set inclusion.

Finally, we claim that for \mathbb{P}-a.s. $\omega \in \Omega$, the sample path $t \in[0, T] \mapsto B_{t}(\omega) \in \mathbb{R}$ of the one-dimensional Brownian motion $\left\{B(t): t \in \mathbb{R}_{+}\right\}$at ω, i.e., the Brownian path at ω is not γ-Hölder continuous at any point in $[0, T]$, where $\gamma \in\left(\frac{1}{2}+\frac{1}{k},+\infty\right)$. We consider the following event for each $T>0$, given by

$$
\mathcal{E}(T):=\{\omega \in \Omega: \text { the Brownian path at } \omega \text { is } \gamma \text {-Hölder continuous at some point } s \in[0, T]\} \in \mathcal{F} .
$$

Then, one can see for every $t>0$ that

$$
\mathcal{E}(T) \subseteq \bigcup_{n=1}^{\infty}\left[\bigcup_{M=1}^{\infty} \mathcal{A}_{n}(M, T)\right]
$$

Due to the countable sub-additivity of $\mathbb{P}\{\cdot\}$, one has

$$
\begin{aligned}
\mathbb{P}\{\mathcal{E}(T)\} & \leq \mathbb{P}\left\{\bigcup_{n=1}^{\infty}\left[\bigcup_{M=1}^{\infty} \mathcal{A}_{n}(M, T)\right]\right\} \\
& =\mathbb{P}\left\{\bigcup_{M=1}^{\infty}\left[\bigcup_{n=1}^{\infty} \mathcal{A}_{n}(M, T)\right]\right\} \\
& \leq \sum_{M=1}^{\infty} \mathbb{P}\left\{\bigcup_{n=1}^{\infty} \mathcal{A}_{n}(M, T)\right\} \\
& \stackrel{(\mathrm{k})}{=} 0
\end{aligned}
$$

where the step (k) is due to the result (5), thereby $\mathbb{P}\{\Omega \backslash \mathcal{E}(T)\}=1$. Also, it's clear that if $\omega \in \Omega \backslash \mathcal{E}(T)$, the Brownian path $t \in[0, T] \mapsto B_{t}(\omega) \in \mathbb{R}$ is not γ-Hölder continuous at every point in $[0, T]$ and this completes the proof of our claim. Since this claim holds for any $T>0$, it suffices to put $T=1$ in order to achieve the desired result in this problem.

Problem 4 (Exercise 7.1.6. in [1]).
Since $\left\{B(t): t \in \mathbb{R}_{+}\right\}$has independent increments and it satisfies the following properties:

$$
B(0)=0 \quad \text { and } \quad B(s+t)-B(s) \sim \mathrm{N}(0, t) \text { if } s \geq 0 \text { and } t>0
$$

we see that for any fixed $t \in(0,+\infty)$,

$$
\begin{equation*}
\left\{\Delta_{m, n}:=B\left(\frac{t}{2^{n}} m\right)-B\left(\frac{t}{2^{n}}(m-1)\right): m \in\left[2^{n}\right]\right\} \stackrel{\text { i.i.d. }}{\sim} \mathrm{N}\left(0, \frac{t}{2^{n}}\right) . \tag{6}
\end{equation*}
$$

Thus we have

$$
\begin{equation*}
\mathbb{E}\left[\sum_{m=1}^{2^{n}} \Delta_{m, n}^{2}\right]=\sum_{m=1}^{2^{n}} \mathbb{E}\left[\Delta_{m, n}^{2}\right]=\sum_{m=1}^{2^{n}} \operatorname{Var}\left[\Delta_{m, n}\right]=t \tag{7}
\end{equation*}
$$

Therefore, we arrive at

$$
\begin{align*}
\mathbb{E}\left[\left(\sum_{m=1}^{2^{n}} \Delta_{m, n}^{2}-t\right)^{2}\right] & =\mathbb{E}\left[\left(\sum_{m=1}^{2^{n}} \Delta_{m, n}^{2}-\mathbb{E}\left[\sum_{m=1}^{2^{n}} \Delta_{m, n}^{2}\right]\right)^{2}\right] \\
& =\operatorname{Var}\left[\sum_{m=1}^{2^{n}} \Delta_{m, n}^{2}\right] \\
& \stackrel{(\text { a) }}{=} \sum_{m=1}^{2^{n}} \operatorname{Var}\left[\Delta_{m, n}^{2}\right] \\
& \stackrel{(\mathrm{b})}{=} 2^{n} \cdot \operatorname{Var}\left[\Delta_{1, n}^{2}\right] \\
& =2^{n}\left\{\mathbb{E}\left[\Delta_{1, n}^{4}\right]-\left(\mathbb{E}\left[\Delta_{1, n}^{2}\right]\right)^{2}\right\} \tag{8}\\
& \stackrel{(\text { c) })}{=} 2^{n}\left\{\mathbb{E}\left[\Delta_{1, n}^{4}\right]-\left(\frac{t}{2^{n}}\right)^{2}\right\} \\
& \stackrel{(\mathrm{d})}{=} 2^{n}\left\{\left(\sqrt{\frac{t}{2^{n}}}\right)^{4} \mathbb{E}\left[Z^{4}\right]-\left(\frac{t}{2^{n}}\right)^{2}\right\} \\
& =\frac{t^{2}}{2^{n}}\left(\mathbb{E}\left[Z^{4}\right]-1\right) \\
& \stackrel{(\mathrm{e})}{=} \frac{t^{2}}{2^{n-1}},
\end{align*}
$$

where $Z \sim \mathrm{~N}(0,1)$, and the above steps (a)-(e) can be verified as follows:
(a) the independence of $\left\{\Delta_{m, n}: m \in\left[2^{n}\right]\right\}$;
(b) $\left\{\Delta_{m, n}: m \in\left[2^{n}\right]\right\}$ is identically distributed (see (7) for further details);
(c) $\Delta_{1, n} \sim \mathrm{~N}\left(0, \frac{t}{2^{n}}\right)$;
(d) the same reason as the step (c);
(e) we can see via a simple integration by parts that $\mathbb{E}\left[Z^{4}\right]=3$.

Hereafter, we let $X_{n}:=\sum_{m=1}^{2^{n}} \Delta_{m, n}^{2}$ for each $n \in \mathbb{N}$. From the computations (7) and (8), we know that

$$
\mathbb{E}\left[X_{n}\right]=t \quad \text { and } \quad \operatorname{Var}\left[X_{n}\right]=\frac{t^{2}}{2^{n-1}}
$$

Let $\mathcal{D}_{n}(\epsilon):=\left\{\omega \in \Omega:\left|X_{n}(\omega)-t\right|>\epsilon\right\} \in \mathcal{F}$ for any $\epsilon>0$. Then we obtain for every $n \in \mathbb{N}$,

$$
\mathbb{P}\left\{\mathcal{D}_{n}(\epsilon)\right\} \stackrel{(\mathrm{f})}{\leq} \epsilon^{-2} \cdot \mathbb{E}\left[\left|X_{n}(\omega)-t\right|^{2}\right]=\epsilon^{-2} \cdot \operatorname{Var}\left[X_{n}\right]=\left(\frac{t}{\epsilon}\right)^{2} \cdot \frac{1}{2^{n-1}},
$$

where the step (f) follows from the Chebyshev's inequality. Thus, it leads to

$$
\sum_{n=1}^{\infty} \mathbb{P}\left\{\mathcal{D}_{n}(\epsilon)\right\} \leq\left(\frac{t}{\epsilon}\right)^{2} \sum_{n=1}^{\infty} \frac{1}{2^{n-1}}=2\left(\frac{t}{\epsilon}\right)^{2}<+\infty
$$

thereby the first Borel-Cantelli lemma implies

$$
\begin{equation*}
\mathbb{P}\left\{\limsup _{n \rightarrow \infty} \mathcal{D}_{n}(\epsilon)\right\}=0, \forall \epsilon>0 \tag{9}
\end{equation*}
$$

Now, we define

$$
\mathcal{E}:=\bigcap_{k=1}^{\infty}\left\{\Omega \backslash\left(\limsup _{n \rightarrow \infty} \mathcal{D}_{n}\left(\frac{1}{k}\right)\right)\right\} \in \mathcal{F}
$$

Since

$$
\mathbb{P}\{\Omega \backslash \mathcal{E}\}=\mathbb{P}\left\{\bigcup_{k=1}^{\infty} \limsup _{n \rightarrow \infty} \mathcal{D}_{n}\left(\frac{1}{k}\right)\right\} \leq \sum_{k=1}^{\infty} \mathbb{P}\left\{\limsup _{n \rightarrow \infty} \mathcal{D}_{n}\left(\frac{1}{k}\right)\right\}=0
$$

we find that $\mathbb{P}\{\mathcal{E}\}=1$. Moreover, if $\omega \in \mathcal{E}$, we see that for every $k \in \mathbb{N}$,

$$
\left|X_{n}(\omega)-t\right| \leq \frac{1}{k}
$$

for all but finitely many $n \in \mathbb{N}$. Thus we arrive at

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left|X_{n}(\omega)-t\right| \leq \frac{1}{k}, \forall k \in \mathbb{N} \tag{10}
\end{equation*}
$$

thereby letting $k \rightarrow \infty$ in the right-hand side of (10) yields $\lim _{n \rightarrow \infty}\left|X_{n}(\omega)-t\right|=0$. Hence,

$$
\lim _{n \rightarrow \infty} \sum_{m=1}^{2^{n}} \Delta_{m, n}^{2}(\omega)=\lim _{n \rightarrow \infty} X_{n}(\omega)=t
$$

for all $\omega \in \mathcal{E}$, and this shows that

$$
\sum_{m=1}^{2^{n}} \Delta_{m, n}^{2} \xrightarrow{n \rightarrow \infty} t
$$

\mathbb{P}-almost surely, as desired.

References

[1] Rick Durrett. Probability: theory and examples, volume 49. Cambridge university press, 2019.

