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Throughout this homework, let Z+ denote the set of all non-negative integers, R+ be the set of all non-

negative real numbers, and [a : b] := {a, a+ 1, · · · , b− 1, b} for a, b ∈ Z with a ≤ b. We also write [n] := [1 : n]

for n ∈ N. Moreover,
⊎

denotes the disjoint union, and given a set A and k ∈ Z+,
(
A
k

)
:= {B ⊆ A : |B| = k}.

Also, we use the symbol S instead of S to denote the underlying state space of stochastic processes. Moreover,

let (Ω,F ,P) denote the underlying probability space and {B(t) : t ∈ R+} refers to a standard one-dimensional

Brownian motion defined on (Ω,F ,P), i.e., a one-dimensional Brownian motion defined on (Ω,F ,P) with

B(0) = 0.

Problem 1 (Exercise 7.1.1. in [1]).

We know that B(s) and B(t)−B(s) are independent and

B(s) ∼ N(0, s) and B(t)−B(s) ∼ N(0, t− s),

where N(µ, σ2) denotes the normal distribution with mean µ ∈ R and variance σ2 ∈ (0,+∞). So the joint

pdf of (B(s), B(t)−B(s)) is given by

f(x, y) :=
1√
2πs

exp

(
−x

2

2s

)
· 1√

2π(t− s)
exp

(
− y2

2(t− s)

)
=

1

2π
√
s(t− s)

exp

{
−1

2

(
x2

s
+

y2

t− s

)}
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for (x, y) ∈ R2. Hence, we have for every 0 < s < t < +∞,

P {B(s) > 0, B(t) > 0} = P {B(s) > 0, {B(t)−B(s)}+B(s) > 0}

=

∫
{(x,y)∈R2: x>0, x+y>0}

f(x, y)dxdy

(a)
=

∫
{(u,v)∈R2: u>0,

√
su+
√
t−sv>0}

f(
√
su,
√
t− sv) ·

√
s(t− s)dudv

=
1

2π

∫
{(u,v)∈R2: u>0,

√
su+
√
t−sv>0}

exp

{
−1

2

(
u2 + v2

)}
dudv

(b)
=

1

2π

∫
{
(r,θ)∈[0,+∞)×[0,2π): r>0, − arctan

(√
s
t−s

)
<θ<π

2

} exp

(
−1

2
r2
)
· rdrdθ

(c)
=

1

2π

(∫ ∞
0

r exp

(
−1

2
r2
)

dr

)(∫ π
2

− arctan
(√

s
t−s

) dθ

)

=
1

4
+

1

2π
arctan

(√
s

t− s

)
=

1

4
+

1

2π
arcsin

(√
s

t

)
,

where the steps (a)–(c) can be justified as follows:

(a) change of variables with (x, y) =
(√
su,
√
t− sv

)
;

(b) change of variables with (u, v) = (r cos θ, r sin θ);

(c) the Fubini-Tonelli’s theorem.

Problem 2 (Exercise 7.1.4. in [1]).

We begin with some formal definitions. Let (S,S) be a measurable space and T be any index set.

Definition 1. Let ST := {ω(·) : T→ S} and ST be the σ-field on ST generated by the collection of cylindrical

sets{{
ω(·) ∈ ST : ω(t1) ∈ A1, ω(t2) ∈ A2, · · · , ω(tn) ∈ An

}
: n ∈ N, t1, t2, · · · , tn ∈ T, A1, A2, · · · , An ∈ S

}
.

We call ST the product σ-field or the cylindrical σ-field on ST.

Definition 2. For any subsets I ⊆ J ⊆ T, let πJI : SJ → SI denote the canonical projection map f 7→ f |I .
Let Σ(T) be the collection of all countable subsets of T. Given any C ∈ Σ(T) and E ∈ SC, we define

[C, E] :=
{
ω(·) ∈ ST : πTC(ω) = (ω(t) : t ∈ C) ∈ E

}
⊆ ST.

We say that a subset A ⊆ ST has a countable representation if A = [C, E] for some C ∈ Σ(T) and E ∈ SC.

Let CR(ST) denote the collection of all subsets of ST which has a countable representation.

Lemma 1. CR(ST) forms a σ-field on ST.

Proof of Lemma 1.

To begin with, it’s clear that ∅ and ST belong to CR(ST).
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(i) If A ∈ CR(ST), then A = [C, E] for some C ∈ Σ(T) and E ∈ SC. Then, ST \A =
[
C,SC \ E

]
∈ CR(ST).

(ii) Let {An}∞n=1 be any sequence in CR(ST). Then we may write An = [Cn, En] for some Cn ∈ Σ(T) and

En ∈ SCn for each n ∈ N. Set C :=
⋃∞
n=1Cn ∈ Σ(T). Given any subsets I ⊆ J ⊆ T, every pre-image of

a cylindrical set in SI under the canonical projection map πJI :
(
SJ ,SJ

)
→
(
SI ,SI

)
is also a cylindrical

set in SJ . Therefore, the canonical projection map πJI :
(
SJ ,SJ

)
→
(
SI ,SI

)
is measurable. So we find

that
(
πCCn

)−1
(En) ∈ SC for all n ∈ N. Let D :=

⋃∞
n=1

(
πCCn

)−1
(En) ∈ SC. Then for every ω(·) ∈ ST,

the following holds:

ω(·) ∈
∞⋃
n=1

An ⇔ ω(·) ∈ An for some n ∈ N

⇔
(
πTCn

)
(ω) ∈ En for some n ∈ N

(a)⇔
(
πTC

)
(ω) ∈

(
πCCn

)−1
(En) for some n ∈ N

⇔
(
πTC

)
(ω) ∈ D

⇔ ω(·) ∈ [C, D] ,

where the step (a) holds since πTCn =
(
πCCn

)
◦
(
πTC
)

for every n ∈ N. Hence, we have
⋃∞
n=1An = [C, D] ∈

CR(ST).

To sum up, we conclude that CR(ST) is a σ-field on ST.

Now we claim that ST = CR(ST). Choose any cylindrical set in ST,

A =
{
ω(·) ∈ ST : ω(t1) ∈ A1, ω(t2) ∈ A2, · · · , ω(tn) ∈ An

}
,

where t1, t2, · · · , tn ∈ T are distinct indices, and A1, A2, · · · , An ∈ S. Let C be any countable subset of T
containing {t1, t2, · · · , tn}, and

E :=
n⋂
j=1

(
πC{tj}

)−1
(Aj) =

{
f ∈ SC : f(t1) ∈ A1, f(t2) ∈ A2, · · · , f(tn) ∈ An

}
∈ SC.

Then, A = [C, E] ∈ CR(ST) and since CR(ST) is a σ-field on ST (∵ Lemma 1) containing all cylindrical sets

in ST, we deduce ST ⊆ CR(ST).

Conversely, let A ∈ CR(ST). Then,

A = [C, E] =
(
πTC

)−1
(E) ∈ ST,

since the canonical projection map πTC :
(
ST,ST

)
→
(
SC,SC

)
is measurable. Thus, we have CR(ST) ⊆ ST

and this completes the proof of our desired claim ST = CR(ST). Employing this result to the case for which

(S,S) = (R,B(R)), where B(R) = R denotes the Borel σ-field on R, and T = R+ = [0,+∞), we see that

R[0,+∞) = F0 and obtain the desired result.
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Problem 3 (Exercise 7.1.5. in [1]).

To begin with, we fix any k ∈ N and an exponent γ ∈
(
1
2 + 1

k ,+∞
)
. For any given C, T ∈ (0,+∞), we

consider the event

An(C, T ) :=

{
ω ∈ Ω : there is an s ∈ [0, T ] s.t. |Bt(ω)−Bs(ω)| ≤ C |t− s|γ whenever |t− s| ≤ k · T

n

}
∈ F ,

and define

Yn,l := max

{∣∣∣∣B((l + j) · T
n

)
−B

(
(l + j − 1) · T

n

)∣∣∣∣ : j ∈ [0 : k − 1]

}
for each l ∈ [n− k + 1], and

Bn(C, T ) :=

{
ω ∈ Ω : there exists an l ∈ [n− k + 1] s.t. |Yn,l(ω)| ≤ C

(
T

n

)γ
{kγ + (k − 1)γ}

}
∈ F .

Claim 1. For any C, T ∈ (0,+∞), we have An(C, T ) ⊆ Bn(C, T ).

Proof of Claim 1.

If ω ∈ An(C, T ), then there exists an s ∈ [0, T ] such that

|Bt(ω)−Bs(ω)| ≤ C |t− s|γ (1)

for every t ∈
[
s− k · Tn , s+ k · Tn

]
. Here, we may consider the following two cases:

Case #1. s ∈
[
0, (n− k + 1) · Tn

]
: Then s ∈

[
(l − 1) · Tn , l ·

T
n

]
for some l ∈ [n− k + 1]. Since we have∣∣∣∣(l + j − 1) · T

n
− s
∣∣∣∣ ≤ j · Tn ≤ (k − 1) · T

n
;∣∣∣∣(l + j) · T

n
− s
∣∣∣∣ ≤ (j + 1) · T

n
≤ k · T

n
,

(2)

for every j ∈ [0 : k − 1], we obtain from the bound (1) that∣∣∣B(l+j)·T
n

(ω)−B(l+j−1)·T
n

(ω)
∣∣∣ (a)≤ ∣∣∣B(l+j)·T

n
(ω)−Bs(ω)

∣∣∣+
∣∣∣Bs(ω)−B(l+j−1)·T

n
(ω)
∣∣∣

≤ C
∣∣∣∣(l + j) · T

n
− s
∣∣∣∣γ + C

∣∣∣∣s− (l + j − 1) · T
n

∣∣∣∣γ
(b)

≤ C

(
T

n

)γ
{kγ + (k − 1)γ} ,

where the step (a) is due to the triangle inequality, and the step (b) follows from the bound (2). Thus we

arrive at

|Yn,l(ω)| = max
{∣∣∣B(l+j)·T

n
(ω)−B(l+j−1)·T

n
(ω)
∣∣∣ : j ∈ [0 : k − 1]

}
≤ C

(
T

n

)γ
{kγ + (k − 1)γ} .

Case #2. s ∈
(
(n− k + 1) · Tn , T

]
: Since (n− k + 1 + j) · Tn ∈

[
(n− k + 1) · Tn , T

]
and (n− k + j) · Tn ∈[

(n− k) · Tn , T
]

for every j ∈ [0 : k − 1], we see that∣∣∣∣(n− k + j) · T
n
− s
∣∣∣∣ ≤ k · Tn ;∣∣∣∣(n− k + 1 + j) · T

n
− s
∣∣∣∣ ≤ (k − 1) · T

n

(3)
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for every j ∈ [0 : k − 1]. So we may deduce∣∣∣B(n−k+1+j)·T
n

(ω)−B(n−k+j)·T
n

(ω)
∣∣∣ (c)≤ ∣∣∣B(n−k+1+j)·T

n
(ω)−Bs(ω)

∣∣∣+
∣∣∣Bs(ω)−B(n−k+j)·T

n
(ω)
∣∣∣

≤ C
∣∣∣∣(n− k + 1 + j) · T

n
− s
∣∣∣∣γ + C

∣∣∣∣s− (n− k + j) · T
n

∣∣∣∣γ
(d)

≤ C

(
T

n

)γ
{kγ + (k − 1)γ} ,

where the step (c) makes use of the triangle inequality, and the step (d) follows from the fact (3). Therefore,

one has

|Yn,n−k+1(ω)| = max
{∣∣∣B(n−k+1+j)·T

n
(ω)−B(n−k+j)·T

n
(ω)
∣∣∣ : j ∈ [0 : k − 1]

}
≤ C

(
T

n

)γ
{kγ + (k − 1)γ} .

To sum up, we conclude that ω ∈ Bn(C, T ) as desired.

Thanks to Claim 1, we arrive at

P {An(C, T )}

≤ P {Bn(C, T )}

= P

{
n−k+1⋃
l=1

{
max

{∣∣∣∣B((l + j) · T
n

)
−B

(
(l + j − 1) · T

n

)∣∣∣∣ : j ∈ [0 : k − 1]

}
≤ C

(
T

n

)γ
{kγ + (k − 1)γ}

}}
(e)

≤
n−k+1∑
l=1

P


k−1⋂
j=0

{∣∣∣∣B((l + j) · T
n

)
−B

(
(l + j − 1) · T

n

)∣∣∣∣ ≤ C (Tn
)γ
{kγ + (k − 1)γ}

}
(f)
=

n−k+1∑
l=1

k−1∏
j=0

P
{∣∣∣∣B((l + j) · T

n

)
−B

(
(l + j − 1) · T

n

)∣∣∣∣ ≤ C (Tn
)γ
{kγ + (k − 1)γ}

}
(g)
=

n−k+1∑
l=1

k−1∏
j=0

P
{∣∣∣∣B(Tn

)∣∣∣∣ ≤ C (Tn
)γ
{kγ + (k − 1)γ}

}
(h)

≤ n

[
P

{
|Z| ≤ C

(
T

n

)γ− 1
2

{kγ + (k − 1)γ}

}]k

≤ n

∫ C(Tn )
γ− 1

2 {kγ+(k−1)γ}

−C(Tn )
γ− 1

2 {kγ+(k−1)γ}

1√
2π

exp

(
−1

2
x2
)

dx

k

(i)

≤ n

2C {kγ + (k − 1)γ}
(
T
n

)γ− 1
2

√
2π

k

=

[
2C {kγ + (k − 1)γ}T γ−

1
2

√
2π

]k
· n−k(γ−

1
2
− 1
k ),

(4)

where Z ∼ N(0, 1), and the above steps (e)–(i) can be validated as follows:

(e) the union bound;
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(f) {B(t) : t ∈ R+} has independent increments;

(g) B
(
(l + j) · Tn

)
−B

(
(l + j − 1) · Tn

) d
= B

(
T
n

)
∼ N

(
0, Tn

)
for every l ∈ [n− k + 1] and j ∈ [0 : k − 1];

(h) B
(
T
n

) d
=
√

T
nZ;

(i) 1√
2π

exp
(
−x2

2

)
≤ 1√

2π
for all x ∈ R.

Since the exponent γ satisfies γ > 1
2 + 1

k , by letting n→∞ in the bound (4) we obtain for every C, T > 0,

0 = lim
n→∞

P {An(C, T )} (j)
= P

{ ∞⋃
n=1

An(C, T )

}
, (5)

where the step (j) follows from the fact that {An(C, T )}∞n=1 is a non-decreasing sequence of events with

respect to the set inclusion.

Finally, we claim that for P-a.s. ω ∈ Ω, the sample path t ∈ [0, T ] 7→ Bt(ω) ∈ R of the one-dimensional

Brownian motion {B(t) : t ∈ R+} at ω, i.e., the Brownian path at ω is not γ-Hölder continuous at any point

in [0, T ], where γ ∈
(
1
2 + 1

k ,+∞
)
. We consider the following event for each T > 0, given by

E(T ) := {ω ∈ Ω : the Brownian path at ω is γ-Hölder continuous at some point s ∈ [0, T ]} ∈ F .

Then, one can see for every t > 0 that

E(T ) ⊆
∞⋃
n=1

[ ∞⋃
M=1

An(M,T )

]
.

Due to the countable sub-additivity of P{·}, one has

P {E(T )} ≤ P

{ ∞⋃
n=1

[ ∞⋃
M=1

An(M,T )

]}

= P

{ ∞⋃
M=1

[ ∞⋃
n=1

An(M,T )

]}

≤
∞∑

M=1

P

{ ∞⋃
n=1

An(M,T )

}
(k)
= 0,

where the step (k) is due to the result (5), thereby P {Ω \ E(T )} = 1. Also, it’s clear that if ω ∈ Ω\E(T ), the

Brownian path t ∈ [0, T ] 7→ Bt(ω) ∈ R is not γ-Hölder continuous at every point in [0, T ] and this completes

the proof of our claim. Since this claim holds for any T > 0, it suffices to put T = 1 in order to achieve the

desired result in this problem.

Problem 4 (Exercise 7.1.6. in [1]).

Since {B(t) : t ∈ R+} has independent increments and it satisfies the following properties:

B(0) = 0 and B(s+ t)−B(s) ∼ N(0, t) if s ≥ 0 and t > 0,

we see that for any fixed t ∈ (0,+∞),{
∆m,n := B

(
t

2n
m

)
−B

(
t

2n
(m− 1)

)
: m ∈ [2n]

}
i.i.d.∼ N

(
0,

t

2n

)
. (6)
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Thus we have

E

[
2n∑
m=1

∆2
m,n

]
=

2n∑
m=1

E
[
∆2
m,n

]
=

2n∑
m=1

Var [∆m,n] = t. (7)

Therefore, we arrive at

E

( 2n∑
m=1

∆2
m,n − t

)2
 = E

( 2n∑
m=1

∆2
m,n − E

[
2n∑
m=1

∆2
m,n

])2


= Var

[
2n∑
m=1

∆2
m,n

]
(a)
=

2n∑
m=1

Var
[
∆2
m,n

]
(b)
= 2n · Var

[
∆2

1,n

]
= 2n

{
E
[
∆4

1,n

]
−
(
E
[
∆2

1,n

])2}
(c)
= 2n

{
E
[
∆4

1,n

]
−
(
t

2n

)2
}

(d)
= 2n


(√

t

2n

)4

E
[
Z4
]
−
(
t

2n

)2


=
t2

2n
(
E
[
Z4
]
− 1
)

(e)
=

t2

2n−1
,

(8)

where Z ∼ N(0, 1), and the above steps (a)–(e) can be verified as follows:

(a) the independence of {∆m,n : m ∈ [2n]};

(b) {∆m,n : m ∈ [2n]} is identically distributed (see (7) for further details);

(c) ∆1,n ∼ N
(
0, t

2n

)
;

(d) the same reason as the step (c);

(e) we can see via a simple integration by parts that E
[
Z4
]

= 3.

Hereafter, we let Xn :=
∑2n

m=1 ∆2
m,n for each n ∈ N. From the computations (7) and (8), we know that

E [Xn] = t and Var [Xn] =
t2

2n−1
.

Let Dn(ε) := {ω ∈ Ω : |Xn(ω)− t| > ε} ∈ F for any ε > 0. Then we obtain for every n ∈ N,

P {Dn(ε)}
(f)

≤ ε−2 · E
[
|Xn(ω)− t|2

]
= ε−2 · Var [Xn] =

(
t

ε

)2

· 1

2n−1
,

where the step (f) follows from the Chebyshev’s inequality. Thus, it leads to

∞∑
n=1

P {Dn(ε)} ≤
(
t

ε

)2 ∞∑
n=1

1

2n−1
= 2

(
t

ε

)2

< +∞,
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thereby the first Borel-Cantelli lemma implies

P
{

lim sup
n→∞

Dn(ε)

}
= 0, ∀ε > 0. (9)

Now, we define

E :=
∞⋂
k=1

{
Ω \

(
lim sup
n→∞

Dn
(

1

k

))}
∈ F .

Since

P {Ω \ E} = P

{ ∞⋃
k=1

lim sup
n→∞

Dn
(

1

k

)}
≤
∞∑
k=1

P
{

lim sup
n→∞

Dn
(

1

k

)}
= 0,

we find that P {E} = 1. Moreover, if ω ∈ E , we see that for every k ∈ N,

|Xn(ω)− t| ≤ 1

k

for all but finitely many n ∈ N. Thus we arrive at

lim sup
n→∞

|Xn(ω)− t| ≤ 1

k
, ∀k ∈ N, (10)

thereby letting k →∞ in the right-hand side of (10) yields limn→∞ |Xn(ω)− t| = 0. Hence,

lim
n→∞

2n∑
m=1

∆2
m,n(ω) = lim

n→∞
Xn(ω) = t

for all ω ∈ E , and this shows that
2n∑
m=1

∆2
m,n

n→∞−→ t

P-almost surely, as desired.
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