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Throughout this homework, let Z, denote the set of all non-negative integers, Ry be the set of all non-
negative real numbers, and [a : b] ;== {a,a+1,--- ;b —1,b} fora,b € Z with a < b. We also write [n] := [1 : n]
for n € N. Moreover, |4 denotes the disjoint union, and given a set A and k € Z, (?) ={BC A:|B|=k}.
Also, we use the symbol S instead of S to denote the underlying state space of stochastic processes. Moreover,
let (€2, F,P) denote the underlying probability space and {B(t) : t € R } refers to a standard one-dimensional
Brownian motion defined on (2, F,P), i.e., a one-dimensional Brownian motion defined on (92, F,P) with
B(0) = 0.

Problem 1 (Ezercise 7.1.1. in [1]).
We know that B(s) and B(t) — B(s) are independent and

B(s) ~N(0,s) and B(t)— B(s) ~N(0,t— s),

where N(u,0?) denotes the normal distribution with mean p € R and variance o2 € (0, +00). So the joint
pdf of (B(s), B(t) — B(s)) is given by
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for (x,7) € R?. Hence, we have for every 0 < s < t < 400,
P{B(s) >0,B(t) >0} =P{B(s) > 0,{B(t) — B(s)} + B(s) > 0}
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where the steps (a)—(c) can be justified as follows:
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(a) change of variables with (z,y) = (V/su, vt — sv);
(b) change of variables with (u,v) = (rcos#,rsinf);
(¢) the Fubini-Tonelli’s theorem.

Problem 2 (Ezxercise 7.1.4. in [1]).

We begin with some formal definitions. Let (S,S) be a measurable space and T be any index set.

Definition 1. Let ST := {w(-) : T — S} and ST be the o-field on ST generated by the collection of cylindrical

sets
{{w() € ST : w(tl) S Al,w(tg) € Ay, - ,w(tn) S An} :n € Nyty,to,--- ,t, € T, A1, A, -+ Ay € S} .
We call ST the product o-field or the cylindrical o-field on ST.

Definition 2. For any subsets I C J C T, let 7TI S7 — S’ denote the canonical projection map f + f|;.
Let X(T) be the collection of all countable subsets of T. Given any C € %(T) and E € S, we define

C,E] = {w(-) e ST 7l(w) = (w(t) : t € C) € E} csT.

We say that a subset A C ST has a countable representation if A = [C, E] for some C € ¥(T) and E € S°.

Let CR(ST) denote the collection of all subsets of ST which has a countable representation.
Lemma 1. CR(SY) forms a o-field on ST.

Proof of Lemma 1.
To begin with, it’s clear that @ and ST belong to CR(ST).



(i) If A € CR(ST), then A = [C, E] for some C € %(T) and E € S®. Then, ST\ A = [C,S®\ E] € CR(ST).

(ii) Let {A,}°°, be any sequence in CR(ST). Then we may write A,, = [C,, E,] for some C,, € ¥(T) and
E, € 8% for each n € N. Set C := | J22, C,, € %(T). Given any subsets I C J C T, every pre-image of
a cylindrical set in S’ under the canonical projection map 7r‘] : (SJ .S ) — (SI St ) is also a cylindrical
set in S7. Therefore, the canonical projection map 77 7 (SJ S ) (SI St ) is measurable. So we find
that (, Cn)fl( ) € SE for all m € N. Let D := |52, (&, )71( E,) € 8. Then for every w(-) € ST,
the following holds:

GGAn & w(v) € A, for some n € N
n=1
& (chn) (w) € E,, for some n € N
2 (WCT) (w) € (77&)71 (E,) for some n € N
& (7%) (w)eD
& w()e[C D],
where the step (a) holds since Wgn = (ﬂ'gn) o (ﬂ'g) for every n € N. Hence, we have | J;2; A, = [C, D] €

CR(ST).

To sum up, we conclude that CR(ST) is a o-field on ST.

O
Now we claim that ST = CR(ST). Choose any cylindrical set in ST,
A= {w(~) e ST w(ty) € A, w(ts) € As, -+ ,w(tn) € An} ,
where tq,ts, -+ ,t, € T are distinct indices, and Ay, As,--- , A, € S. Let C be any countable subset of T

containing {t,ta, - ,tn}, and
ﬂ (ﬂ-{tj ) ) = {f GS(C : f(tl) EAlaf(tQ) eAZ?"' 7f(tn) EAn} ES(C-

Then, A = [C, E] € CR(ST) and since CR(ST) is a o-field on ST (" Lemma 1) containing all cylindrical sets
in ST, we deduce ST C CR(S™).
Conversely, let A € CR(ST). Then,

A=[cB= () (B)es”,

since the canonical projection map (. : (ST ST) (S(C SC) is measurable. Thus, we have CR(ST) C ST
and this completes the proof of our desired claim ST = CR(ST). Employing this result to the case for which
(S,S8) = (R,B(R)), where B(R) = R denotes the Borel o-field on R, and T = R, = [0,+00), we see that
RI0+00) — JFo and obtain the desired result.



Problem 3 (Ezercise 7.1.5. in [1]).
To begin with, we fix any k£ € N and an exponent v € (% + %, +oo). For any given C,T € (0, +00), we

consider the event
T

A, (C.T) := {w € Q: thereis an s € [0,7T] s.t. |Bi(w) — Bs(w)| < C'|t — 5|7 whenever |t —s| <k - } € F,
n

and define
Ym,::max{‘B((lJrj)-:)—B((Hj—l)-z)‘:je[ozk—l]}

for each | € [n — k + 1], and
T\7
B,.(C,T) = {w € Q:thereexistsanl € [n —k+1] s.t. |Y,;(w)| <C <> {7+ (k — 1)7}} e F.
n

Claim 1. For any C,T € (0,+00), we have A,(C,T) C B,(C,T).

Proof of Claim 1.
If we A,(C,T), then there exists an s € [0, 7] such that

|Bi(w) = Bs(w)| < C'ft — 5|7 (1)
for every t € [s —k- %, s+ k- %] Here, we may consider the following two cases:
Case #1. s€ [0,(n—k+1)- %] Then s € [(I—1)- %,l- %] for some [ € [n — k + 1]. Since we have

T
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n

T
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for every j € [0 : k — 1], we obtain from the bound (1) that

(a)
<

Byjz(@) = Byjonz@)

o(T) wro-y,

where the step (a) is due to the triangle inequality, and the step (b) follows from the bound (2). Thus we
arrive at

T
n

Vol = max{ B ) 20) ~ By )| sd € 0k -1 <€ () g o1y,

Case #2. s€ (n—k—+1)- L. T]: Since (n—k+1+4)-Le[(n—k+1)- L, T]and (n—k+j) - L €
[(n—k)-L,T] for every j € [0: k — 1], we see that

(n—Fk+j)-
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S8 =3I

e



for every j € [0: k — 1]. So we may deduce

(©)
<

B (@) = Baw)| + | Bo(w) = By 2 (@)

(n—k+1+5)-L (w) — B(nkarj)-% (w) B(nfk+1+j)-%

v v

T
< C +C|s— OZ—-k—Fj)‘;;

T
(n——k%—l%—j)-g~—s

o(T) wee-,

where the step (c) makes use of the triangle inequality, and the step (d) follows from the fact (3). Therefore,

one has
y T ’ Y vy
Yo sr (@)] = max{‘B(n7k+1+j)%(w) - B(nfkﬂ)_%(w)‘ jef0:k— 1]} <C(=) (F+ k-1

To sum up, we conclude that w € B,,(C,T) as desired.

Thanks to Claim 1, we arrive at

P{A.(C,T)}
< P{B.(C,T)}
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where Z ~ N(0, 1), and the above steps (e)—(i) can be validated as follows:

(e) the union bound;



(f) {B(t):t € Ry} has independent increments;

(2) B((l+j)-%)—B((l+j—1)‘%)iB(Z)N (0,L) for every L € [n —k+1] and j € [0: k — 1];

n

(1) Tom XD (—%) < \/% for all z € R.

Since the exponent ~ satisfies v > % + %, by letting n — oo in the bound (4) we obtain for every C,T > 0,

) 00
0= lim P{A,(C,T)} @P{U An(C,T)}, (5)
n—oo
n=1

where the step (j) follows from the fact that {A,(C,T)},7, is a non-decreasing sequence of events with
respect to the set inclusion.

Finally, we claim that for P-a.s. w € €, the sample path t € [0,T] — Bi(w) € R of the one-dimensional
Brownian motion {B(t) : t € Ry} at w, i.e., the Brownian path at w is not y-Holder continuous at any point

in [0,T], where v € (% + %, +oo). We consider the following event for each T > 0, given by
E(T) := {w € Q : the Brownian path at w is y-Holder continuous at some point s € [0,7]} € F.

Then, one can see for every ¢t > 0 that

eryc (| U Aonn
n=1 LM=1

where the step (k) is due to the result (5), thereby P{Q\ E(T)} = 1. Also, it’s clear that if w € Q\ E(T), the
Brownian path t € [0,7] — Bi(w) € R is not y-Hélder continuous at every point in [0, 7] and this completes
the proof of our claim. Since this claim holds for any 7" > 0, it suffices to put 7' = 1 in order to achieve the

desired result in this problem.

Problem 4 (Ezercise 7.1.6. in [1]).
Since {B(t) : t € Ry} has independent increments and it satisfies the following properties:

B(0)=0 and B(s+t)— B(s) ~N(0,t) if s >0 and ¢t > 0,

we see that for any fixed ¢ € (0, +00),

{Am,n =B <2tnm> - B (;Tl(m - 1)) m € [2"]} SN (o, 2’;) . (6)



Thus we have

E
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Therefore, we arrive at
£l (X atat) | =5 |3 2t m | X sk])
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where Z ~ N(0,1), and the above steps (a)—(e) can be verified as follows:
(a) the independence of {A,, , : m € [2"]};
(b) {Ann :m € [2"]} is identically distributed (see (7) for further details);
(c) Ain~N (O, i);
(d) the same reason as the step (c);
(e) we can see via a simple integration by parts that E [Z4] =3.

Hereafter, we let X,, := 23::1 A2, for each n € N. From the computations (7) and (8), we know that

E [Xn] =t and Var [Xn] = F

Let Dy(e) :={w € Q: | X, (w) —t| > €} € F for any € > 0. Then we obtain for every n € N,

P {D,(e)} 2 [\Xn(m —tﬂ — 2. Var[X,] = (t)Q. L

where the step (f) follows from the Chebyshev’s inequality. Thus, it leads to

Semon (£ -2(() <o

n=1
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thereby the first Borel-Cantelli lemma implies

n—o0

= Py o (s (1))} <7

P{Q\E} = P{Iglimsupi)n (;)} < i]P’{limsupDn <i)} =0,

n—00 n—00
k=1

P {lim sup Dn(e)} =0, Ve>0. (9)

Now, we define
Since

we find that P{€} = 1. Moreover, if w € £, we see that for every k € N,
[ Xn(w) — ] <
for all but finitely many n € N. Thus we arrive at

1
limsup | X, (w) —t] < o Vk e N, (10)

n—oo

thereby letting k — oo in the right-hand side of (10) yields lim, o | X, (w) — t| = 0. Hence,

lim Z A2 (W)= lim X,(w)=t

n—oo n—oo
m=1
for all w € £, and this shows that
271
> oA
m=1

P-almost surely, as desired.
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