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Throughout this homework, let Z+ denote the set of all non-negative integers, R+ be the set of all non-

negative real numbers, and [a : b] := {a, a+ 1, · · · , b− 1, b} for a, b ∈ Z with a ≤ b. We also write [n] := [1 : n]

for n ∈ N. Moreover,
⊎

denotes the disjoint union, and given a set A and k ∈ Z+,
(
A
k

)
:= {B ⊆ A : |B| = k}.

Also, we use the symbol S instead of S to denote the underlying state space of stochastic processes.

Problem 1 (Exercise 6.1.1. in [1]).

Let (Ω,F ,P) be a probability space, ϕ : (Ω,F ,P)→ (Ω,F ,P) be a measure-preserving transformation,

and Iϕ denote the collection of all ϕ-invariant events, i.e.,

Iϕ :=
{
A ∈ F : P

{
A4ϕ−1(A)

}
= 0
}
.

Then, it’s clear that (i) ∅ and Ω belong to Iϕ. Choose any A ∈ Iϕ. Since ϕ−1 (Ω \A) = Ω \ ϕ−1(A),

(Ω \A)4ϕ−1 (Ω \A) = (Ω \A)4
(
Ω \ ϕ−1(A)

)
= A4ϕ−1(A),

so P
{

(Ω \A)4ϕ−1 (Ω \A)
}

= P
{
A4ϕ−1(A)

}
= 0. Thus, (ii) A ∈ Iϕ implies Ω \A ∈ Iϕ. Now, choose any

sequence {An}∞n=1 in Iϕ. From( ∞⋃
n=1

An

)
4ϕ−1

( ∞⋃
n=1

An

)
=

( ∞⋃
n=1

An

)
4

( ∞⋃
n=1

ϕ−1(An)

)

=

[( ∞⋃
n=1

An

)
\

( ∞⋃
n=1

ϕ−1(An)

)]
∪

[( ∞⋃
n=1

ϕ−1(An)

)
\

( ∞⋃
n=1

An

)]

=

[ ∞⋃
n=1

{
An \

( ∞⋃
n=1

ϕ−1(An)

)}]
∪

[ ∞⋃
n=1

{
ϕ−1(An) \

( ∞⋃
n=1

An

)}]

⊆

[ ∞⋃
n=1

{
An \ ϕ−1(An)

}]
∪

[ ∞⋃
n=1

{
ϕ−1(An) \An

}]

=

∞⋃
n=1

[{
An \ ϕ−1(An)

}
∪
{
ϕ−1(An) \An

}]︸ ︷︷ ︸
= An4ϕ−1(An)

=
∞⋃
n=1

{
An4ϕ−1(An)

}
,
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one can see that

P

{( ∞⋃
n=1

An

)
4ϕ−1

( ∞⋃
n=1

An

)}
(a)

≤
∞∑
n=1

P
{
An4ϕ−1(An)

}
= 0,

where the step (a) follows from the countable sub-additivity of P{·}. Therefore, (iii) if {An}∞n=1 is a sequence

in Iϕ, then
⋃∞
n=1An ∈ Iϕ. So, the above properties (i), (ii), and (iii) shows that Iϕ is a σ-field on Ω.

Now, let’s prove that a random variable X : (Ω,F)→ (R,B(R)) is Iϕ-measurable if and only if X = X◦ϕ
P-almost surely. (#) We first prove the “only if” part: assume that X is Iϕ-measurable. For any q ∈ Q, let

Eq := X−1 ((−∞, q])4 (X ◦ ϕ)−1 ((−∞, q])

= {ω ∈ Ω : either X(ω) ≤ q, (X ◦ ϕ) (ω) > q or X(ω) > q, (X ◦ ϕ) (ω) ≤ q} .

Since X is Iϕ-measurable, X−1 ((−∞, q]) ∈ Iϕ for all q ∈ Q and thus

P {Eq} = P
{
X−1 ((−∞, q])4ϕ−1

(
X−1 ((−∞, q])

)}
= 0, ∀q ∈ Q.

At this point, we claim that

{ω ∈ Ω : X(ω) 6= (X ◦ ϕ) (ω)} =
⋃
q∈Q
Eq. (1)

We may observe that for any B ∈ B(R),

X−1(B)4 (X ◦ ϕ)−1 (B)

= {ω ∈ Ω : either X(ω) ∈ B, (X ◦ ϕ) (ω) ∈ R \B or X(ω) ∈ R \B, (X ◦ ϕ) (ω) ∈ B}

⊆ {ω ∈ Ω : X(ω) 6= (X ◦ ϕ) (ω)} .

(2)

The observation (2) implies Eq ⊆ {ω ∈ Ω : X(ω) 6= (X ◦ ϕ) (ω)} for every q ∈ Q, thereby one has⋃
q∈Q
Eq ⊆ {ω ∈ Ω : X(ω) 6= (X ◦ ϕ) (ω)} . (3)

On the other hand, if ω ∈ {X 6= X ◦ ϕ}, we may choose a rational number q ∈ Q lying between X(ω) and

(X ◦ ϕ) (ω) since Q is dense in R. For this case, we have either X(ω) < q < (X ◦ ϕ) (ω) or (X ◦ ϕ) (ω) <

q < X(ω) and this implies

ω ∈ {ω ∈ Ω : either X(ω) ≤ q, (X ◦ ϕ) (ω) > q or X(ω) > q, (X ◦ ϕ) (ω) ≤ q}

= X−1 ((−∞, q])4 (X ◦ ϕ)−1 ((−∞, q])

= Eq.

Therefore, we arrive at

{ω ∈ Ω : X(ω) 6= (X ◦ ϕ) (ω)} ⊆
⋃
q∈Q
Eq, (4)

and combining (3) together with (4) yields our desired claim (1). Hence, we can see that

P {ω ∈ Ω : X(ω) 6= (X ◦ ϕ) (ω)} = P

⋃
q∈Q
Eq

 (b)

≤
∑
q∈Q

P {Eq}
(c)
= 0, (5)

where the step (b) is due to the countable sub-additivity of P{·}, and the step (c) holds since P {Eq} = 0 for

all q ∈ Q, and the result (5) shows that if X is Iϕ-measurable, then X = X ◦ ϕ P-almost surely.
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Finally, we prove the “if” part of the statement (#). Suppose that X is ϕ-invariant, i.e., X = X ◦ ϕ
P-almost surely. The set relation (2) implies

P
{
X−1(B)4 (X ◦ ϕ)−1 (B)

}
= P

{
X−1(B)4ϕ−1

(
X−1(B)

)}
= 0

for all B ∈ B(R), and thus X−1(B) ∈ Iϕ for every B ∈ B(R). Hence, X is Iϕ-measurable and this completes

the proof of the statement (#).

Problem 2 (Exercise 6.1.2. in [1]).

(i) Let (Ω,F ,P) be a probability space, ϕ : (Ω,F ,P)→ (Ω,F ,P) be a measure-preserving transformation,

and Iϕ denote the ϕ-invariant σ-field. Note that we have seen that Iϕ forms a σ-field on Ω. Now, let A ∈ F
and B :=

⋃∞
n=0 ϕ

−n(A) ∈ F . Then,

ϕ−1(B) = ϕ−1

{ ∞⋃
n=0

ϕ−n(A)

}
=

∞⋃
n=0

ϕ−1
{
ϕ−n(A)

}
=

∞⋃
n=0

ϕ−(n+1)(A) ⊆
∞⋃
n=0

ϕ−n(A) = B.

(ii) Let B ∈ F be any event such that ϕ−1(B) ⊆ B and C :=
⋂∞
n=0 ϕ

−n(B) ∈ F . Then,

ϕ−1(C) = {ω ∈ Ω : ϕ(ω) ∈ C}

= {ω ∈ Ω : ϕn (ϕ(ω)) ∈ B for all n ∈ Z+}

=

∞⋂
n=1

ϕ−n(B).

(6)

Thus, one has

C =
∞⋂
n=0

ϕ−n(B) = B ∩

[ ∞⋂
n=1

ϕ−n(B)

]
(a)
= B ∩ ϕ−1(C)

(b)
= ϕ−1(C),

where the step (a) is simply the equality (6), and the step (b) holds since

ϕ−1(C) = ϕ−1

{ ∞⋂
n=0

ϕ−n(B)

}
⊆ ϕ−1(B) ⊆ B,

and this establishes the statement (ii).

(iii) Let us begin with the following useful lemma:

Lemma 1. If A ∈ Iϕ, then P {A4ϕ−n(A)} = 0 for all n ∈ Z+.

Proof of Lemma 1.

The case n = 0 and n = 1 is trivial from the definition of the ϕ-invariance. So, we assume n ≥ 2.

P
{
A \ ϕ−n(A)

}
= P

{(
A \ ϕ−(n−1)(A)

)
\ ϕ−n(A)

}
+ P

{(
A ∩ ϕ−(n−1)(A)

)
\ ϕ−n(A)

}
≤ P

{
A \ ϕ−(n−1)(A)

}
+ P

{
ϕ−(n−1)(A) \ ϕ−n(A)

}
= P

{
A \ ϕ−(n−1)(A)

}
+ P

{
ϕ−(n−1)

(
A \ ϕ−1(A)

)}
(c)
= P

{
A \ ϕ−(n−1)(A)

}
+ P

{
A \ ϕ−1(A)

}
,

(7)
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where the step (c) follows from the fact that ϕ : (Ω,F ,P)→ (Ω,F ,P) is measure-preserving. Analogously,

P
{
ϕ−n(A) \A

}
= P

{(
ϕ−n(A) \ ϕ−(n−1)(A)

)
\A
}

+ P
{(
ϕ−n(A) ∩ ϕ−(n−1)(A)

)
\A
}

≤ P
{
ϕ−n(A) \ ϕ−(n−1)(A)

}
+ P

{
ϕ−(n−1)(A) \A

}
= P

{
ϕ−(n−1)

(
ϕ−1(A) \A

)}
+ P

{
ϕ−(n−1)(A) \A

}
(d)
= P

{
ϕ−1(A) \A

}
+ P

{
ϕ−(n−1)(A) \A

}
,

(8)

where the step (d) holds by the fact that ϕ : (Ω,F ,P)→ (Ω,F ,P) is measure-preserving. By summing two

inequalities (7) and (8), we arrive at

P
{
A4ϕ−n(A)

}
≤ P

{
A4ϕ−(n−1)(A)

}
+ P

{
A4ϕ−1(A)

}︸ ︷︷ ︸
= 0

= P
{
A4ϕ−(n−1)(A)

}
(9)

for every n ≥ 2. So, we may inductively deduce

P
{
A4ϕ−n(A)

}
≤ P

{
A4ϕ−1(A)

}
= 0

for all n ≥ 2, and this establishes our desired result.

Now, it’s time to prove the following statement: A ∈ Iϕ if and only if there is an event C ∈ F such that

ϕ−1(C) = C and P {A4C} = 0. We first prove the “only if” part of the statement. Given any A ∈ Iϕ, let

C := lim sup
n→∞

ϕ−n(A) =
∞⋂
n=0

[ ∞⋃
k=n

ϕ−k(A)

]
=
∞⋂
n=0

ϕ−n

( ∞⋃
k=0

ϕ−k(A)

)
∈ F .

From the above statements (i) and (ii), we see that C = ϕ−1(C), i.e., C is ϕ-invariant in the strict sense.

Now, it remains to prove P {A4C} = 0. We reach

P {A \ C} = P

{
A ∩

[ ∞⋃
n=0

{ ∞⋂
k=n

ϕ−k(Ω \A)

}]}

= P

{ ∞⋃
n=0

[
A ∩

{ ∞⋂
k=n

ϕ−k(Ω \A)

}]}
(e)

≤
∞∑
n=0

P

{
A ∩

{ ∞⋂
k=n

ϕ−k(Ω \A)

}}

≤
∞∑
n=0

P
{
A ∩ ϕ−n(Ω \A)

}
=
∞∑
n=0

P
{
A \ ϕ−n(A)

}
,

(10)

where the step (e) comes from the countable sub-additivity of P{·}, and

P {C \A} = P

{[ ∞⋂
n=0

{ ∞⋃
k=n

ϕ−k(A)

}]
\A

}

≤ P

{{ ∞⋃
n=0

ϕ−n(A)

}
\A

}
(f)

≤
∞∑
n=0

P
{
ϕ−n(A) \A

}
,

(11)
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where the step (f) is owing to the countable sub-additivity of P{·}. Summing two bounds (10) and (11)

yields

P {A4C} ≤
∞∑
n=0

(
P
{
A \ ϕ−n(A)

}
+ P

{
ϕ−n(A) \A

})
=

∞∑
n=0

P
{
A4ϕ−n(A)

} (g)
= 0,

where the step (g) makes use of Lemma 1, and this establishes the “only if” part of our target statement.

Finally, it remains to prove the “if” part of the statement. One has

0 = P {A4C}

= P {A \ C}+ P {C \A}
(h)
= P

{
ϕ−1 (A \ C)

}
+ P

{
ϕ−1 (C \A)

}
= P

{
ϕ−1(A) \ ϕ−1(C)

}
+ P

{
ϕ−1(C) \ ϕ−1(A)

}
(i)
= P

{
ϕ−1(A) \ C

}
+ P

{
C \ ϕ−1(A)

}
= P

{
ϕ−1(A)4C

}
,

where the step (h) follows from the fact that ϕ is measure-preserving, and the step (i) is due to the assumption

C = ϕ−1(C). From the following two inequalities

P
{
A \ ϕ−1(A)

}
= P

{
(A ∩ C) \ ϕ−1(A)

}
+ P

{
(A \ C) \ ϕ−1(A)

}
≤ P

{
C \ ϕ−1(A)

}
+ P {A \ C} ;

P
{
ϕ−1(A) \A

}
= P

{(
ϕ−1(A) ∩ C

)
\A
}

+ P
{(
ϕ−1(A) \ C

)
\A
}
≤ P {C \A}+ P

{
ϕ−1(A) \ C

}
,

we have

P
{
A4ϕ−1(A)

}
≤ P {A4C}+ P

{
ϕ−1(A)4C

}
= 0.

Hence, A ∈ Iϕ, i.e., A is P-almost ϕ-invariant and this completes the proof of the “if” part of the statement.

Problem 3 (Exercise 6.1.4. in [1]).

Let {Xn : (Ω,F)→ (S,S)}∞n=0 be a stationary sequence defined on the probability space (Ω,F ,P), where

(S,S) is a nice measurable space, i.e., a standard Borel space. In order to establish the desired result, we

first provide the following modification of Kolmogorov’s extension theorem:

Lemma 2. Let (S,S) be a nice measurable space, T be a countable index set, and Σ(T ) denote the collection

of all finite subsets of T . For any subsets I ⊆ J ⊆ T , let πJI : SJ → SI , ω 7→ ω|I , be the canonical projection

map. Suppose {µI : I ∈ Σ(T )} is a collection of probability measures, where µI is a probability measure on(
SI ,SI

)
for I ∈ Σ(T ), satisfying the following consistency property: for finite subsets F ⊆ G ⊆ T , we have

µF = µG ◦
(
πGF
)−1

, i.e.,

µF (A) = µG

{(
πGF
)−1

(A)
}
, ∀A ∈ SF . (12)

Then, there is a unique probability measure µ on the product space
(
ST ,ST

)
such that µF = µ◦

(
πTF
)−1

for all

F ∈ Σ(T ). Here, we make use of the following convention: given any measurable function f : (X,A)→ (Y,B)

between two measurable spaces, we define f−1 : B → A to be B ∈ B 7→ f−1(B) ∈ A.

Proof of Lemma 2.

Let T := {tn : n ∈ N} be the enumeration of T , and Tn := {t1, t2, · · · , tn} for n ∈ N. For each n ∈ N, let

νn be the probability measure on (Sn,Sn) defined by

νn (A1 ×A2 × · · · ×An) := µTn
({
ω ∈ STn : ωt1 ∈ A1, ωt2 ∈ A2, · · · , ωtn ∈ An

})
5



for A1, A2, · · · , An ∈ S, and then extend it to Sn via the π-λ theorem (Theorem 2.1.6 in [1]). Then one can

see that for every n ≥ 2,

νn−1 (A1 ×A2 × · · · ×An−1) = µTn−1

({
ω ∈ STn−1 : ωt1 ∈ A1, ωt2 ∈ A2, · · · , ωtn−1 ∈ An−1

})
(a)
=

(
µTn ◦

(
πTnTn−1

)−1)({
ω ∈ STn−1 : ωt1 ∈ A1, ωt2 ∈ A2, · · · , ωtn−1 ∈ An−1

})
= µTn

({
ω ∈ STn : ωt1 ∈ A1, ωt2 ∈ A2, · · · , ωtn−1 ∈ An−1, ωtn ∈ S

})
= νn ((A1 ×A2 × · · · ×An−1)× S)

for all A1, A2, · · · , An−1 ∈ S, and this implies that {νn}∞n=1 is a consistent sequence of probability measures.

According to the original Kolmogorov’s extension theorem, there exists a unique probability measure ν on(
SN,SN

)
such that

ν
({
ω ∈ SN : ω1 ∈ A1, ω2 ∈ A2, · · · , ωn ∈ An

})
= νn (A1 ×A2 × · · · ×An)

for every n ∈ N and A1, A2, · · · , An ∈ S. Now, let Φ :
(
SN,SN

)
→
(
ST ,ST

)
be a measurable map defined by

[Φ(ω)]tn := ωn, ∀n ∈ N,

for every ω ∈ SN, and µ(A) := ν
{

Φ−1(A)
}

for A ∈ ST . Now it only remains to verify µF = µ ◦
(
πTF
)−1

for

every F ∈ Σ(T ). Since F is a finite subset of T , we have F ⊆ Tk for some k ∈ N and thus µF = µTk ◦
(
πTkF

)−1
from the condition (12). It leads to

µF

(∏
i∈F

Ai

)
= µTk

{(
πTkF

)−1(∏
i∈I

Ai

)}

= µTk

∏
i∈Tk

Ãi


= µTk

({
ω ∈ STk : ωt1 ∈ Ãt1 , ωt2 ∈ Ãt2 , · · · , ωtk ∈ Ãtk

})
= νk

 k∏
j=1

Ãtj


(b)
= ν

({
ω ∈ SN : ω1 ∈ Ãt1 , ω2 ∈ Ãt2 , · · · , ωk ∈ Ãtk

})
(c)
= ν

(
Φ−1

({
ω ∈ ST : ωt1 ∈ Ãt1 , ωt2 ∈ Ãt2 , · · · , ωtk ∈ Ãtk

}))
= µ

({
ω ∈ ST : ωt1 ∈ Ãt1 , ωt2 ∈ Ãt2 , · · · , ωtk ∈ Ãtk

})
= µ

({
ω ∈ ST : ωi ∈ Ai, ∀i ∈ F

})
=
(
µ ◦
(
πTF
)−1)(∏

i∈I
Ai

)
for every Ai ∈ S, i ∈ F , where the step (b) follows from the construction of the canonical probability measure

ν on
(
SN,SN

)
, and the step (c) is due to the definition of the measurable map Φ :

(
SNSN

)
→
(
ST ,ST

)
. We

note that we employed the convention

Ãi :=

Ai if i ∈ F ;

S otherwise,
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for every i ∈ Tk, and the π-λ theorem (Theorem 2.1.6 in [1]) deduces µF = µ ◦
(
πTF
)−1

on the whole σ-field

SF . This completes the proof of Lemma 2.

Now, we consider the case for which T = Z in Lemma 2. Let Σ(Z) be the collection of all finite subsets of

Z. Given any I ∈ Σ(Z), where I := {i1, i2, · · · , in} with i1 < i2 < · · · < in, we define a probability measure

µI on
(
SI ,SI

)
by

µI

(∏
i∈I

Ai

)
:= P

{
Xi1+i

−
1
∈ Ai1 , Xi2+i

−
1
∈ Ai2 , · · · , Xin+i

−
1
∈ Ain

}
(13)

for Ai1 , Ai2 , · · · , Ain ∈ S, and extend it to SI via the π-λ theorem, where x− := max {0,−x} for x ∈ R.

Then for every k ∈ [n], putting Aik = S to (13) yields

µI\{ik}

 ∏
i∈I\{ik}

Ai

 = P
{
Xil+i

−
1
∈ Ail , ∀l ∈ [n] \ {k}

}
= µI

(
Ai1 × · · · ×Aik−1

× S×Aik+1
× · · · ×Ain

)
= µI

(πII\{ik})−1
 ∏
i∈I\{ik}

Ai


for every Ai ∈ S, i ∈ I \ {ik}, and thus the uniqueness part of Kolmogorov’s extension theorem yields

µI\{ik} = µI ◦
(
πII\{ik}

)−1
(14)

for every k ∈ [n]. So for any finite subsets J ⊆ I ⊆ Z, one can see that µJ = µI ◦
(
πIJ
)−1

by employing

(14) repeatedly, and this implies that the collection {µI : I ∈ Σ(Z)} of probability measures, where µI is a

probability measure on
(
SI ,SI

)
for I ∈ Σ(Z), satisfies the consistency property (12). According to Lemma

2, there is a unique probability measure µ on
(
SZ,SZ

)
such that µF = µ ◦

(
πZF
)−1

for all F ∈ Σ(Z). Now,

let Yn : SZ → S be defined by Yn(ω) := ωn for every n ∈ Z. Choose any k ∈ Z and m ∈ Z+. Then for any

A0, A1, · · · , Am ∈ S, one has

µ ({Yk ∈ A0, Yk+1 ∈ A1, · · · , Yk+m ∈ Am})

= µ
({
ω ∈ SZ : ωk ∈ A0, ωk+1 ∈ A1, · · · , ωk+m ∈ Am

})
= µ

((
πZ[k:k+m]

)−1 ({
ω ∈ S[k:k+m] : ωk ∈ A0, ωk+1 ∈ A1, · · · , ωk+m ∈ Am

}))
= µ[k:k+m]

({
ω ∈ S[k:k+m] : ωk ∈ A0, ωk+1 ∈ A1, · · · , ωk+m ∈ Am

})
(d)
= P

{
Xk+k− ∈ A0, X(k+1)+k− ∈ A1, · · · , X(k+m)+k− ∈ Am

}
(e)
= P {X0 ∈ A0, X1 ∈ A1, · · · , Xm ∈ Am} ,

(15)

where the step (d) comes from the definition of µ[k:k+m] as (13), and the step (e) holds since the stochastic

process {Xn}∞n=0 is a stationary sequence defined on (Ω,F ,P). Since the equation (15) holds for any k ∈ Z, we

may conclude that the sequence of random vectors {(Yk, Yk+1, · · · , Yk+m) : k ∈ Z} are identically distributed

under µ constructed on
(
SZ,SZ

)
, for every m ∈ Z+. Hence, {Yn : n ∈ Z} is a two-sided stationary sequence

defined on the canonical probability space
(
SZ,SZ, µ

)
and this finishes the proof.
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Problem 4 (Exercise 6.2.1. in [1]).

Since the function Φp(x) := |x|p, x ∈ R, is a convex function for p > 1, we have

E [|X|]p = Φp (E [|X|])
(a)

≤ E [Φp (|X|)] = E [|X|p]
(b)
< +∞,

where the step (a) follows from Jensen’s inequality, and the step (b) holds since X ∈ Lp (Ω,F ,P), and this

implies X ∈ L1 (Ω,F ,P). So, the Birkhoff’s ergodic theorem (Theorem 6.2.1 in [1]) implies

1

n

n−1∑
k=0

X ◦ ϕk n→∞−→ E [X|Iϕ] (16)

P-almost surely, where ϕ : (Ω,F ,P)→ (Ω,F ,P) is a given measure-preserving transformation and Iϕ denotes

the ϕ-invariant σ-field on Ω. Since E [X|Iϕ] is Iϕ-measurable, Problem 1 implies E [X|Iϕ] = E [X|Iϕ] ◦ ϕk

P-almost surely, for every k ∈ Z+. Thus, one has

1

n

n−1∑
k=0

X ◦ ϕk − E [X|Iϕ]
P-a.s.
=

1

n

n−1∑
k=0

(X − E [X|Iϕ]) ◦ ϕk, (17)

and (16) implies 1
n

∑n−1
k=0 (X − E [X|Iϕ]) ◦ϕk n→∞−→ 0 P-almost surely. Let X ′ := X−E [X|Iϕ], and note that

X ′ ∈ Lp (Ω,F ,P), since

E [|E [X|Iϕ]|p]
(c)

≤ E [E [|X|p|Iϕ]] = E [|X|p] < +∞,

where the step (c) makes use of Jensen’s inequality. Thanks to the equality (17), it suffices to prove

1

n

n−1∑
k=0

X ′ ◦ ϕk Lp

−→ 0 (18)

as n→∞.

Given any M > 0, let YM := X ′ · 1{|X′|≤M} and ZM := X ′ − YM = X ′ · 1{|X′|>M}. Then,

1

n

n−1∑
k=0

X ′ ◦ ϕk P-a.s.
=

{(
1

n

n−1∑
k=0

YM ◦ ϕk
)
− E [YM |Iϕ]

}
︸ ︷︷ ︸

=: (T1)

+

{(
1

n

n−1∑
k=0

ZM ◦ ϕk
)
− E [ZM |Iϕ]

}
︸ ︷︷ ︸

=: (T2)

, (19)

since E [YM |Iϕ] + E [ZM |Iϕ]
P-a.s.
= E [X ′|Iϕ]

P-a.s.
= 0. From the convexity of the function Φp(·), one has

1

n

n∑
k=1

|xk|p =
1

n

n∑
k=1

Φp (xk) ≥ Φp

(
1

n

n∑
k=1

xk

)
=

∣∣∣∣∣ 1n
n∑
k=1

xk

∣∣∣∣∣
p

(20)

for every n ∈ N and x1, x2, · · · , xn ∈ R. Employing the inequality (20) for the case n = 2 to the decomposition

(19) and then taking expectations gives

E

[∣∣∣∣∣ 1n
n−1∑
k=0

X ′ ◦ ϕk
∣∣∣∣∣
p]

= E [|(T1) + (T2)|p] ≤ 2p−1 (E [|(T1)|p] + E [|(T2)|p]) . (21)

So, in order to prove our claim (18), we need to show that E [|(T1)|p] n→∞−→ 0 and E [|(T2)|p] n→∞−→ 0.

Due to the Birkhoff’s ergodic theorem (Theorem 6.2.1 in [1]), one has

(T1) =

(
1

n

n−1∑
k=0

YM ◦ ϕk
)
− E [YM |Iϕ]

n→∞−→ 0 (22)
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P-almost surely. Note that YM ∈ Lp (Ω,F ,P) and thus YM ∈ L1 (Ω,F ,P). On the other hand,

|(T1)|p =

∣∣∣∣∣
(

1

n

n−1∑
k=0

YM ◦ ϕk
)
− E [YM |Iϕ]

∣∣∣∣∣
p

=

∣∣∣∣∣ 1n
n−1∑
k=0

(
YM ◦ ϕk − E [YM |Iϕ]

)∣∣∣∣∣
p

(d)

≤ 1

n

n−1∑
k=0

∣∣∣YM ◦ ϕk − E [YM |Iϕ]
∣∣∣p

(e)

≤ 1

n

n−1∑
k=0

(
|YM | ◦ ϕk + |E [YM |Iϕ]|

)p
(f)

≤ 1

n

n−1∑
k=0

(
|YM | ◦ ϕk + E [|YM | |Iϕ]

)p
≤ 1

n

n−1∑
k=0

(2M)p = (2M)p

P-almost surely, where the above steps can be justified as follows:

(d) the inequality (20);

(e) the triangle inequality;

(f) Jensen’s inequality for conditional expectations.

Therefore, the bounded convergence theorem together with the P-almost sure convergence (22) yields

lim
n→∞

E [|(T1)|p] = E
[

lim
n→∞

|(T1)|p
]

= 0. (23)

Now, let’s take a closer look at the second term (T2). Applying the inequality (17) for the case n = 2 to

(T2) and then taking expectations yields

E [|(T2)|p] ≤ 2p−1

(
E

[∣∣∣∣∣ 1n
n−1∑
k=0

ZM ◦ ϕk
∣∣∣∣∣
p]

+ E [|E [ZM |Iϕ]|p]

)
. (24)

One can see that

E

[∣∣∣∣∣ 1n
n−1∑
k=0

ZM ◦ ϕk
∣∣∣∣∣
p]

(g)

≤ E

[
1

n

n−1∑
k=0

∣∣∣ZM ◦ ϕk∣∣∣p]

= E

[
1

n

n−1∑
k=0

|ZM |p ◦ ϕk
]

=
1

n

n−1∑
k=0

E
[
|ZM |p ◦ ϕk

]
(h)
=

1

n

n−1∑
k=0

E [|ZM |p]

= E [|ZM |p] ,

(25)

where the step (g) makes use of the inequality (17), and the step (h) follows from the following lemma:

9



Lemma 3. If ϕ : (Ω,F ,P)→ (Ω,F ,P) is a measure-preserving transformation, then we have

E [X] = E
[
X ◦ ϕk

]
, ∀k ∈ Z+, (26)

for any non-negative random variable X : (Ω,F)→ (R,B(R)).

Proof of Lemma 3.

First we prove that the statement (26) holds for any F-measurable indicator function. Let A ∈ F . Then,

E [1A] = P {A} (i)
= P

{
ϕ−k(A)

}
= E

[
1ϕ−k(A)

]
= E

[
1A ◦ ϕk

]
,

where the step (i) holds since ϕ : (Ω,F ,P) → (Ω,F ,P) is measure-preserving, thereby the statement (26)

holds for the case X = 1A. So the statement (26) also holds for any F-measurable simple function due to the

linearlity of expectations. Now, we take a non-decreasing sequence {Γn}∞n=0 of non-negative, F-measurable

simple functions such that X = limn→∞ ↑ Γn on Ω, where X : (Ω,F)→ (R,B(R)) is a non-negative random

variable. Since X ◦ ϕk = limn→∞ ↑ Γn ◦ ϕk on Ω, the monotone convergence theorem implies

E[X] = lim
n→∞

↑ E [Γn] = lim
n→∞

↑ E
[
Γn ◦ ϕk

]
= E

[
X ◦ ϕk

]
,

as desired.

Moreover, one has

E [|E [ZM |Iϕ]|p] = E [Φp (E [ZM |Iϕ])]
(j)

≤ E [E [Φp(ZM )|Iϕ]] = E [Φp(ZM )] = E [|ZM |p] , (27)

where the step (j) follows from Jensen’s inequality for conditional expectations. Putting two pieces (25) and

(27) into (24) deduces

E [|(T2)|p] ≤ 2p−1 · 2E [|ZM |p] = 2p · E
[∣∣X ′∣∣p 1{|X′|>M}] . (28)

As the final step, we combine two pieces (23) and (28): from the bound (21), we arrive at

lim sup
n→∞

E

[∣∣∣∣∣ 1n
n−1∑
k=0

X ′ ◦ ϕk
∣∣∣∣∣
p]
≤ 2p−1

[{
lim sup
n→∞

E [|(T1)|p]
}

+

{
lim sup
n→∞

E [|(T2)|p]
}]

≤ 2p−1 · 2p · E
[∣∣X ′∣∣p 1{|X′|>M}]

= 22p−1 · E
[∣∣X ′∣∣p 1{|X′|>M}]

(29)

for every M > 0. Letting M → +∞ in the bound (29) yields

lim
n→∞

E

[∣∣∣∣∣ 1n
n−1∑
k=0

X ′ ◦ ϕk
∣∣∣∣∣
p]

= 0

due to the dominated convergence theorem (∵ X ′ ∈ Lp (Ω,F ,P)), and this leads to our desired result (18).

Problem 5 (Exercise 6.2.2. in [1]).

(i) To begin with, let ϕ : (Ω,F ,P) → (Ω,F ,P) be a measure-preserving transformation, Iϕ denote the

ϕ-invariant σ-field on Ω, and {gn}∞n=0 be a sequence in L1 (Ω,F ,P) such that gn
P-a.s.−→ g as n → ∞, where

g ∈ L1 (Ω,F ,P), and E [sup {|gn| : n ∈ Z+}] < +∞. For this set-up, we prove the following crucial result:
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Claim 1.

lim sup
n→∞

1

n

n−1∑
k=0

gk ◦ ϕk
P-a.s.
≤ E [g|Iϕ] . (30)

Proof of Claim 1.

For each N ∈ Z+, we define a random variable hN := sup {|gn − g| : n ≥ N}, which is P-almost surely

finite since

E [|hN |] = E [sup {|gn − g| : n ≥ N}] ≤ E [(sup {|gn| : n ∈ Z+})] + E [|g|] < +∞.

Then for every n > N ,

1

n

n−1∑
k=0

gk ◦ ϕk =
1

n

N−1∑
k=0

gk ◦ ϕk +
1

n

n−1∑
k=N

gk ◦ ϕk

(a)

≤ 1

n

N−1∑
k=0

(g + h0) ◦ ϕk +
1

n

n−1∑
k=N

(g + hN ) ◦ ϕk

=
1

n

N−1∑
k=0

(h0 − hN ) ◦ ϕk +
1

n

n−1∑
k=0

(g + hN ) ◦ ϕk

(31)

P-almost surely, where the step (a) holds since |gi − g| ≤ h0 for every i ∈ [0 : N − 1] and |gj − g| ≤ hN for

every j ∈ [N : n− 1]. By letting n→∞ in the bound (31), we can see from the Birkhoff’s ergodic theorem

(Theorem 6.2.1 in [1]) that

lim sup
n→∞

1

n

n−1∑
k=0

gk ◦ ϕk
P-a.s.
≤ E [g + hN |Iϕ]

P-a.s.
= E [g|Iϕ] + E [hN |Iϕ] (32)

for everyN ∈ Z+. At this point, we claim that hN
P-a.s.−→ 0 asN →∞. Let E := {ω ∈ Ω : limn→∞ gn(ω) = g(ω)} ∈

F and choose any ω ∈ Ω. Then for any given ε > 0, there is an N(ω, ε) ∈ N such that |gn(ω)− g(ω)| < ε for

all n ≥ N(ω, ε). This implies

hN(ω,ε)(ω) = sup {|gn(ω)− g(ω)| : n ≥ N(ω, ε)} ≤ ε,

and therefore

lim
N→∞

hN (ω)
(b)

≤ hN(ω,ε)(ω) ≤ ε, (33)

where the step (b) follows from the fact that {hN}∞N=0 is a non-increasing sequence. As the inequality (33)

holds for an arbitrarily chosen ε > 0, we obtain limN→∞ hN (ω) = 0 for all ω ∈ E . From the P-almost sure

convergence of the sequence {gn}∞n=0 to g, we know that P {E} = 1 and this completes the proof of the claim

hN
P-a.s.−→ 0 as N → ∞. Since hN ≤ h0 for all N ∈ Z+ together with the fact h0 ∈ L1 (Ω,F ,P), we may

conclude from the dominated convergence theorem for conditional expectations that

E [hN |Iϕ]
P-a.s.−→ 0 (34)

as N →∞. Letting N →∞ in the bound (32), and then putting (34) into (32) yields

lim sup
n→∞

1

n

n−1∑
k=0

gk ◦ ϕk
P-a.s.
≤ E [g|Iϕ] ,

as desired.
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Applying Claim 1 to the sequence {−gn}∞n=0 gives

lim inf
n→∞

1

n

n−1∑
k=0

gk ◦ ϕk
P-a.s.
≥ E [g|Iϕ] , (35)

and combining this bound together with the bound (30) in Claim 1 completes the proof of the statement (i).

(ii) The L1-convergence of {gn}∞n=0 to g implies limn→∞ E [|gn − g|] = 0. From the triangle inequality,

one has

E

[∣∣∣∣∣
(

1

n

n−1∑
k=0

gk ◦ ϕk
)
− E [g|Iϕ]

∣∣∣∣∣
]

≤ E

[∣∣∣∣∣
(

1

n

n−1∑
k=0

gk ◦ ϕk
)
−

(
1

n

n−1∑
k=0

g ◦ ϕk
)∣∣∣∣∣
]

︸ ︷︷ ︸
=: (Q1)

+E

[∣∣∣∣∣
(

1

n

n−1∑
k=0

g ◦ ϕk
)
− E [g|Iϕ]

∣∣∣∣∣
]

︸ ︷︷ ︸
=: (Q2)

.
(36)

We know that limn→∞ (Q2) = 0 owing to the L1-convergence part of the Birkhoff’s ergodic theorem (Theorem

6.2.1 in [1]). So, it suffices to prove limn→∞ (Q1) = 0 by the bound (36). To this end, we observe that

(Q1) = E

[
1

n

∣∣∣∣∣
n−1∑
k=0

(
gk ◦ ϕk − g ◦ ϕk

)∣∣∣∣∣
]

(c)

≤ 1

n

n−1∑
k=0

E
[∣∣∣gk ◦ ϕk − g ◦ ϕk∣∣∣]

=
1

n

n−1∑
k=0

E
[
|gk − g| ◦ ϕk

]
(d)
=

1

n

n−1∑
k=0

E [|gk − g|] ,

(37)

where the step (c) is due to the triangle inequality, and the step (d) comes from Lemma 3. Since the standard

convergence of a sequence in R implies the Cesàro convergence of the sequence, we can see that the last term

of the inequality (37) converges to 0 as n→∞. Therefore, limn→∞ (Q1) = 0 and thus

lim
n→∞

E

[∣∣∣∣∣
(

1

n

n−1∑
k=0

gk ◦ ϕk
)
− E [g|Iϕ]

∣∣∣∣∣
]

= 0,

that is,

1

n

n−1∑
k=0

gk ◦ ϕk
L1

−→ E [g|Iϕ]

as n→∞.

Problem 6 (Exercise 6.2.3. in [1]: Wiener’s maximal inequality).

Let X ′ := X − α, X ′k := X ′ ◦ ϕk for k ∈ Z+, S′n :=
∑n−1

k=0 X
′
k for n ∈ N with S′0 := 0, and

M ′n := max
{
S′k : k ∈ [0 : n]

}
= max

{
0, S′1, S

′
2, · · · , S′n

}
, ∀n ∈ N.
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Then for any ω ∈ Ω, we see that

Dk(ω) > α⇔ Aj(ω) =
Sj(ω)

j
> α for some j ∈ [k]

⇔ Sj(ω)− αj > 0 for some j ∈ [k].

(38)

Since

S′n(ω) =

n−1∑
k=0

(
X ′ ◦ ϕk

)
(ω) =

n−1∑
k=0

{(
X ◦ ϕk

)
(ω)− α

}
=

n−1∑
k=0

(
X ◦ ϕk

)
(ω)− αn = Sn(ω)− αn,

we obtain from (38) that

{ω ∈ Ω : Dk(ω) > α} =
k⋃
j=1

{ω ∈ Ω : Sj(ω)− αj > 0}

=

k⋃
j=1

{
ω ∈ Ω : S′j(ω) > 0

}
=
{
ω ∈ Ω : M ′k(ω) > 0

}
(39)

for every k ∈ N. Since X ′ ∈ L1 (Ω,F ,P), the maximal ergodic lemma (Lemma 6.2.2 in [1]) implies

0 ≤ E
[
X ′ · 1{M ′k>0}

]
= E

[
(X − α) · 1{M ′k>0}

]
= E

[
X · 1{M ′k>0}

]
− αP

{
M ′k > 0

}
(a)
= E

[
X · 1{M ′k>0}

]
− αP {Dk > α}

≤ E
[
|X| · 1{M ′k>0}

]
− αP {Dk > α}

≤ E [|X|]− αP {Dk > α} ,

where the step (a) follows from the set relation (39), and thus we arrive at

P {Dk > α} ≤ α−1E [|X|] ,

as desired.
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