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Throughout this homework, let Z, denote the set of all non-negative integers, Ry be the set of all non-
negative real numbers, and [a : b] ;== {a,a+1,--- ;b —1,b} fora,b € Z with a < b. We also write [n] := [1 : n]
for n € N. Moreover, |4 denotes the disjoint union, and given a set A and k € Z, (?) ={BC A:|B|=k}.
Also, we use the symbol S instead of S to denote the underlying state space of stochastic processes.

We assume throughout this homework that the underlying state space S is countable and it is equipped
with the discrete o-field 25 on S. Since (S, QS) is a nice measurable space, it admits the canonical construction
in Section 5.2 in [1] of the probability measure P, on the sequence space (o, Fs) so that the sequence of
coordinate maps { X, (w) := wy },— is a homogeneous Markov chain with initial distribution x4 and transition

probability p(-,-) : Sx 2% — [0, 1]. We remark that it is conventional to write p(z,y) := p(z, {y}) for z,y € S.

Problem 1 (Ezercise 5.6.1. in [1]).
Observe that for any n € Zy, we have 1¢x, o1 = L{x,—0} ©p on Q. Thus,

P {Xnt1 =0} =E, [1¢x,,,—0}]
= By [1{x,~0} 0 6]

= E, [Ey [1{x,=0} © On| F]]

(a
= E, [Ex, [1{x,-0}]]

=Eu | Ex, [Lixi=0) Lix,=)
x€S

=Py {X; =0} -P,{X,, =0} + P, {X; =0} -P, {X,, = 1}
=(1—a)P,{X, =0} +B(1-P,{X, =0})
=B+ (1 —-a-p8)P,{X, =0},

N

where the step (a) holds by the Markov property (Theorem 5.2.3 in [1]). Here, {F,, := o (Xo, X1, , Xn) oy

denotes the canonical filtration of the Markov chain {X,,},2 ;. From (1), we obtain

Pu{xn:()}—aiﬁ:(1—01—5)(1@“{)(“_1:0 —aiﬁ> 2)



for all n € N. Now, we deduce our desired result via induction on n. The case n = 0 is trivial. Now, assume

that we have

Pt =0 = o v -am o o - 2 3)

for k > 1. Putting the induction hypothesis (3) into the recursive relation (2) directly yields

P 3= 0} = o a—a-p) {uo) - 25}

which completes the proof.

Problem 2 (Ezercise 5.6.2. in [1]).

Since p(-,-) : Sx S — [0,1] is irreducible, there is a positive integer K (x,y) € N such that p%X®¥) (z,) >
0. Due to the aperiodicity of p(,-), we have d, = 1 and so there is a positive integer N(x) € N such that
p"(z,x) > 0 for all n > N(z) by Lemma 5.6.5 in [1]. Thus, one has

()
pn+N(:z:)+K(a:,y) (z,y) > pn+N(x) (z, ) _pK(x,y) (z,y) >0 (4)

for all n € Z,, where the step (a) follows from the Chapman-Kolmogorov equation. Let
I''=max{N(z) + K(z,y) : (z,y) € S x S},
which is finite since S x S is finite. Then for any n > T,
p"(z,y) >0, Y(z,y) €S XS,

since n > I' > N(z) + K(z,y) for all (z,y) € S x S together with the fact (4). Hence, we have p"(z,y) > 0
for all (z,y) € S x S, for any n > T', and it suffices to choose the desired integer m to be greater than T.

Remark 1. Let (S,S) be a nice state space, and (£, F) denote the sequence space obtained from (S,S).
For any probability measure p : S — [0,1] on (S,S), let P, denote the canonical probability measure on
the sequence space (o, Foo) constructed in Section 5.2 of [1] via Kolmogorov’s extension theorem, and
P, :=P;, for x € S, where 6, : S — [0, 1] refers to the Dirac measure centered on the state z € S. Then, we
know that

P, {E} = /g u(dz)P, (B} (5)
for all F € Fi.

Problem 3 (Ezercise 5.6.3. in [1]).
To begin with, we note that S? := S x S is finite.

Claim 1. The transition probability p(-,-) : S* x S — [0,1] on S? defined by

P (21, 31), (w2, 2)) := p(z1, 32) - p(y1, y2), V(z1,m1), (22,92) € S,

1s irreducible and aperiodic.



Proof of Claim 1.
We first claim that for all n € N,

P" ((w1,91), (22,52)) = p™ (@1, 22) - p" (Y1, 2), V(z1,11), (22,2) € S*. (6)

The proof of the claim (6) hinges upon the induction on n. The case n = 1 is immediate from the definition
of p(+,-). Now, assume that (6) holds for the case n = k — 1, where k > 2. Then,

ﬁk((ﬂfl,yl)a(@,yz))@ Z P ((z1,51), (2,w) P ((2,w), (w2, 42))

(z w)€S?

Z (a1, 2)p(yr, w) - p* " (2, 22)p" " (w, y2)
Z'LU

= {Zp(xhz) (2,22 }{Zp y1, w)p*H(w 312)}

z€S weS

(c
© pF (w1, 22)p" (y1, v2),

\Vcr

and this proves the claim (6). Here, the above steps (a)—(c) can be justified as follows:
(a) the Chapman-Kolmogorov equation;
(b) the induction hypothesis;
(c) the same reason as the step (a).

Due to the irreducibility of p(-,-), there are positive integers K, L € N such that

pR(x1,22) >0 and pl(y1,y2) > 0.

Also from the aperiodicity of p(-,-), there is a positive integer Ny € N such that

p"(x1,21) >0 and p"(y1,y1) >0

for all n > Ny. Thus, we have for every n > Ny,
(d)
T1,T2) > P

(e)
Y1, yz)_p

L+n+K( L+n(

P x1,21) - pX (21, 29) > 0;

(7)

K+n+L( K+n(

D y1, 1) - p* (Y1, y2) > 0,

where the step (d) and (e) are consequences of the Chapman-Kolmogorov equation. So for all n > K+ L+ Ny,

one has

-n @ n n ©

p" (z1,91), (¥2,92)) = p"(21,22) - " (y1,92) > 0, (8)
where the step (f) is due to Claim 1, and the step (g) is due to (7), and this establishes the irreducibility of
P(-,-). Note that the integer K + L+ Ny depends on the choice of two states (x1,1), (x2,72) € S. Moreover,
putting (z1,y1) = (z2,2) = (z,y) € S? into the inequality (8) yields p" ((z, %), (z,y)) > 0 for all but finitely
many n € N. This implies d, ,y = 1 for all (z,y) € S?, thereby p(-, ) is aperiodic.

O



Combining Claim 1 together with Problem 2 guarantees that there exists a positive integer I' € N such
that

EF ((331’ y1)7 (an y2)) > 0, v(':Clv y1)7 ('T2a 3/2) € 82' (9)
Let {Z, := (X, Yn)},2, be the canonical homogeneous Markov chain constructed via the construction on

the sequence space in Section 5.2 of [1] with state space S? and transition probability p(-,-) : S x S? — [0, 1].
Further we let A := {(z,2) € S? : £ € S} denote the diagonal of S?, and

€ := min {Zpr (x,y),(2,2)) : (z,y) € 82} = min {P(, ) {Zr € A} : (z,y) € S?} > 0.

z€S

At this point, recall that 7" := inf {n > 1: Z, € A}. Then, we have

P {T >T} =Py, {Z1 €S\ A, ZoeS*\A,--+, Zr € S*\ A}
<Py {Zr € S\ A
<Py {2r \Aj (10)
=1- P(x,y) {Zr S A}
<1l-—c¢
for all (z,y) € S®.. Thanks to Remark 1, we arrive at
P,{T>T}= Y wv(z,y) Puy,{T>T}
(z,y)es?
<(1-¢ Y, vizy) (11)
(z,y)eS?
=1—¢

where v(+) : $? — [0,1] is any initial distribution {Z,}>°,. One can observe that for each k > 2, we have
that if T'(w) > (k — 1)T,

1 it 2 (Q(kfl)F(W)) € §? \ VAR AN (e(kfl)r(UJ)) € §? \ A,
Lyrsry 0 O—1yrw) =
0 otherwise

1 if Zg i (w) € S\ A, Zyr(w) € S\ A

0 otherwise

(h) 1 ifZl(w)€S2\A,-~,ka(w)eSz\A;

0 otherwise
= Lyrsiry (W),

where the step (h) holds since T'(w) > (k — 1)I'. In other words,

Lyrskry = (Lgrsty © Opnyr) Lirs@g—1ry (12)



n (SQ)Z+. Here, 6,, : (82)Z+ — (82)2+ denotes the shift operator on (Sz)Z+. Therefore,

P, {T > kT'} = E, [1zskry]

1=

E
Eu (Lirsry 0 Og—nyr) Lirs@—1)ry]
E

[
V[ [ (Lyrsry © Op—nyr )]l{T>(k—1)F}‘]:(Zk—1)FH
E

[H{T>F} © 01| ]:k 1)4 Lrs (k- 1)r}]

V

(x)
=E [Ez(k—nr [Lir>ry] ﬂ{T><k:—1>r}]

é (1—-eP, {T > (k- 1T},

—~
=

where the above steps (i)—(1) can be validated as follows:
(i) the equality (12);
G A{T>k-1I} = (SQ)Z+ \{T'<(k—-1T} € F, (k pyr since T'is a stopping time with respect to the
canonical filtration {]—"E}ZOZO denotes the canonical filtration of the Markov chain {Z,},°,, where

Fit =0 (Zo, 21, Zn) = 0 (X0, Yo), (X1, V), -+, (X, Vo))
for each n € Z;
(k) the Markov property (Theorem 5.2.3 in [1]);
(1) the inequality (11).
So, we may inductively deduce from (13) that
P, {T > kI'} < (1 — € (14)

for every k € Z. . Note that the bound (14) holds for any initial distribution v(-) : S — [0, 1] of the Markov
chain {Z,},7 .
Finally, choose any n € Z, and let k := L%J € Zy. Since kI' <n < (k+ 1)I', we know § — 1 < k < f.

Hence,

P, {T >n} <P, {T > kI'}

(m)

< (-t

—

n

< (1-of!
1;’{(1_6)%}”’

where the step (m) makes use of the bound (14), and the step (n) holds since 0 <1 —-e<1land k> ¢ —1.
By letting C' := -~ € (0, +00) and r := (1 — e)l € (0,1), the bound (15) establishes the desired result.

Nay

Problem 4 (Ezercise 5.6.5. in [1]: Strong law for additive functionals).

(i) We first prove the following useful result inspired by Ezercise 5.3.1 in [1]:



Lemma 1. Let {X,} 7, be a homogeneous Markov chain with countable state space S and transition proba-
bility p(-,-) : SxS — [0,1], and x € S be a recurrent state of the chain. For k € N, let 73, := TF —T*=1 be the
k-th inter-arrival time to state x, and Vi := <Tk,XTZk:—1,XTJI:c—1+1, ‘e ,Xﬂcfl). Then given any probability
distribution p(-) : S — [0,1], the sequence of random vectors {Vj : k > 2} are independent and identically
distributed under the canonical probability measure P, defined on the sequence space (£, Fxo), conditionally

on the event {T, < +oo}, where T, := TJ is the first hitting time to state x.

Proof of Lemma 1.
To begin with, we may observe that if T~'(w) < +o0, then Livy=p) © Opp—1 = Ly, = for all k > 2 and
veV:=2, {n} xS"). That is,

L=y = (Lpvimo) 01 ) Lzt (16)

on Q, since {V = v} C {Tgé’C < —l—oo} - {Tf‘l < +oo}. Thus, for every k > 2, one has

P, {Vk = v .FT;CA} =E, [H{Vk:v}| .7:T§71}

2, (10100 0015 12 iy 7]

(b)
= Ey [ﬂ{v1=v} 0 O

(©)
= EXTQ,Dc,l [1{V1=v}] ]l{Tf‘1<+oo}

@
= B [Livi=o}] L1 00y

=P {Vi =0} Lypes

Fow—1| Ly k-1 o
Ty } {Tx <+ } (17)

<+oo}

IP,-almost surely, where the above steps (a)—(d) can be justified as follows:

(a) the equality (16);

(b) {TF 1 < 400} € Fork-1, since

{15 < oo} n{TEt = n} = {7 =0} € Fpys
for every n € Zy;

(c) the strong Markov property (Theorem 5.2.5 in [1]);

(d) if TF1 < +o00, then Xpp-1 = for k > 2.
One can immediately deduce from (17) that

P {Vi = v} = By [P { Vi = 0| Fraea }] = Po {13 = 0} B, {TH ! < oo} (18)

At this point, we claim that for all k € N, P, {TF < 400} = P, {T, < +oo}. If k = 1, there’s nothing to



prove and we may assume that k > 2. One can easily see that if 7¥71(w) < +o0, then

(1{TI<+°O} © QTgfﬂ) (w) =

More succinctly, we have

1 if X, <0Tk—1(bU)> = z for some n > 0;
0 otherwise
1 if X, (w) = z for some n > TF1(w);

0 otherwise

= IL{T35<+oo}(w)'

Litectoo} = (1{Tz<+oo} ° 9T§-1) Lerk-1oioo) (19)

on §2y. Hence,

P, {Tk < +oo}

Ey, [ {T’“<+OO}}
2B [(Lncroor 0 s) Tzt ioy]

B[ (s ot ) Tpasor iy | e ]

E,

(f)

2 [ []]-{Tgc<+oo} © O pr—
E,

Frior] Lzt ciom)

—~
o]
-

[EXT!;A [H{Tx<+<>0}] 1{T§*1<+oo}}

(h)
=E, |:Ex [H{Tx<+00}] ]l{Tf*1<+OO}}

= Pzxz ° PM {T_f_l < +OO}

® P, {Tffl < —i—oo} )

where the above steps (e)—(i) hold since:

(e) the equality (19);

(f) the same reason as the step (b);

(g) the same reason as the step (c);

(h) the same reason as the step (d);

(i) pzz = 1, because the state x € S is recurrent,

thereby one can deduce our desired claim from (20) inductively. So, the equation (18) becomes

P, {Vi = v} P, {Ty < +00} = P, {Vi = v} L P, {Vi = v, Ty < +oo},

where the step (j) holds since {V; = v} C {T, < +o0o}, thereby we arrive at

P, {Vi = v} =P, {Vi = v| Ty < +00} (21)

for all k& > 2. Thus, {V} : k > 2} are identically distributed under the canonical probability measure P, on

the sequence space (€9, Foo), conditionally on the event {7, < +o00}.



As the final step, it remains to establish the conditional independence of the sequence {V} : k > 2} given
the event {7, < +oo}. Let {vy : k > 2} be any sequence in V. Since P, {T}, < 400} = P, {TF < 400} for

P,-a.s.

all k € N, we know that Ip, (7, <400} HPN{Tk’<+oo} for all kK € N. Let us begin our argument from the

equation (17): for every k > 2,

P,-a.s.
Pu{vk = Uk|fT§—1} = ]ij {Vl :’Uk} ]l{Tz<+oo}- (22)
It is easy to see that {Vo = w2, V3 =w3,--- , Vi1 = vp_1} € Fri-1, 80
]P)#{‘/Q :U27‘/3 =3, 7Vk :Uk}
= / ]l{Vk=vk}d]P>N
{Va=v2,V3=v3,+ ,Vy_1=vk_1}
® / Py {Vi = 04} Ly, < 400} AP, (23)
{Va=v2,Va=vg, - ,Vi _1=vp_1}

=P, {(Vi=u}P,{Va=vo, Vs =w3,--- , Vi1 = vp—1, Ty < 00}

1

(:) PM {Vk = Uk|Tx < +OO}]P)M{V2 = UQ,V3 = V3, ,Vk,1 = Uk,1’T$ < —i—OO}]P)M {Tx < +OO},
where the step (k) comes from (22), and the step (1) is due to the equation (21). Hence, we reach

PM{VQZUQ,‘/?,:’U37"‘ 7Vk—1 :Uk_1|Tx <—|—OO}]P)M{V]€:U]€‘TJ; <+OO}
_ PM{VQZ'UQ;‘/?):U?n”’ ,Vk:'l)k}

P, {T; < +oo} (24)
(m) P, {Va =v2, V3 = w3, -, Vi = vy, T, < +o00}
P, {T; < +oo}
= P“{VQ :U27‘/:3 =3, 7Vk‘:vk"T(E < +OO},
where the step (m) holds since {Vo = v, V3 = w3, , Vi = v} C {T, < 400}. Therefore, we may induc-
tively conclude that
n
P{Va=wv3, Vs =w3,---,V, = 0| T}y < +00} = HPN{V’“ = | Ty < +o0}
k=2
for all n > 2 and vy, v3, - ,v, € V. Hence, {Vj:k > 2} is a sequence of independent and identically
distributed random vectors under P, defined on (€, Fs ), conditionally on the event {7, < +oo}.
O]

Now, it’s time to complete the proof of the statement (i). Since p(-,-) is irreducible and has a stationary
distribution 7 () : S — [0, 1], it is positive recurrent by Theorem 5.5.12 in [1]. Thanks to Lemma 1, for any

state x € S, the sequence of random vectors,

{Vk = (Tk,XTic—l,XT;c—l+1, ce ’XT;?—I) k> 2} ,

are independent and identically distributed under P,, conditionally on the event {T), < 4+00}. Here, we may

observe that for any event E € F,
P, {E} =P, {E|T, < +o0} P, {T, < +o0} +P,{E|T, = +o0} P, {1 = 400}

o (25)
Y p,{E|T, < +oo},



where the step (n) can be justified as follows: since p(-,-) is irreducible and the state x € S is recurrent,

pye = 1 for all y € S due to Theorem 5.3.2 in [1]. So, Remark 1 implies

Pu{Te < +oo} =Y p(y) Py {Te < +00} = > p(y) - pya = 1,
yeS yeS
as desired. From the observation (25), one can see from Lemma 1 that {V;};, is a sequence of indepen-
dent and identically distributed random vectors under the canonical probability measure P, defined on the
sequence space (€29, Fxo), not necessarily conditionally on the event {7, < +oo}. Furthermore, we obtain
from (21) together with the observation (25) that

P, {Vi = v} =P, {Vi = v} (26)

for all kK > 2 and v € V. Now, define the function F' : V — R by

n—1

F(n,xo,x1,~ : 73:71—1) = Zf(x])a V(n, Ty L1,y ?xn—l) S V.
7=0

Since ka = F (Vg41) for k € N, {ka }OO is a sequence of independent and identically distributed random

variables under P, for any initial distribution (-) : S — [0, 1] of the Markov chain.

It still remains to prove the P,-integrability of ka for k > 2, i.e., E, { kaH < 400 for all &k > 2. To

begin with, we introduce the following conventions:

n(f) =) fmly) and 7 (f]):=D_|f )y

yeS yeS



Then, the following bound holds:

[kt 1

=B || 3 sx)

J=Ty

3

[Th+1_q

<Eq | Y 1f(X))]

L 5=Tk

TE+1_1

Y | Y | TE =T = B

1<a<b<+oo J=Tk

b—1
= > Ee | YU Pe{TE =, T = b}
j=a

1<a<b<+o0

b—1
= Y | CE )| B {7 =, T =0

——
1<a<b< =
sashshoo |IZ0 0 — a(if)

b—1

D (1) 30— )P {TF = 0, TE =)

J=a

L)Y n BT =n)
n=1

= () Ee (1] € oo,
where the above steps (0)—(r) can be validated as follows:
(o) we have P {TF < +oo0} =1 for all n € N due to Remark 1;
(p) m(-) : S — [0,1] is a stationary distribution for p(-,-);

(q) from (26), we get
P, {T, =n} = Py {m =n}

for all n € N, k > 2, and any initial distribution p(-) of the Markov chain;

(r) the state x € S is positive recurrent,

and this completes the proof of the statement (i).

10

=a, Ty =0

)T

}



(ii) Firstly, one can see that
K, ;:inf{kez+:T§ Zn}

= nf{k€Z+:Tk>n—1}
=inflkeZ,: Z]l{x —y <k—1 (27)

- Z Lixj=ay +1
j=1

= n—l(l') + 1.

We defined the events

1
= Qo : 1i = 00}
&1 {w € Qg Jim - E. [Tx]} e F
Ey=qweQ: lim lz:Vf(w):IE [Vf} € Feo-
n—oo n prt k T o
Due to Theorem 5.6.1 in [1], we know that for any state y € S,

n B[] Nt T T

[Py-almost surely, where the step (r) follows from the fact Py {7, < 400} = py, = 1 for every y € S, which
holds by Theorem 5.3.2 in [1]. Thus,

fo ) Mot (1 1)y Loy L
n n

IPy-almost surely, where the step (s) makes use of the observation (27). So, we get P, {£1} =1 for all y € S.
On the other hand, we know from the statement (i) that E, [ f } < 400 for all k£ > 2. The strong law
of large number yields P, {€2} = 1. Since the transition probability p(-,-) is irreducible, there is a positive

integer K (z,7) € N such that pX@¥)(z,7) > 0 for every (z,y) € S x S. If there exists a state z € S such
that 7(z) = 0, then
0=m(z) =Y m(x) p"W(z,2) > n(y) - p"¥(y, 2),

z€S
which implies 7(y) = 0 for all y € S. This violates the fact that m(-) has total mass 1, i.e., > g7(z) = 1,
and therefore we find that 7(z) > 0 for all € S. Remark 1 implies

1=P{&} =) 7(yP, {&},

yEeS

and this yields P, {&2} =1 for all y € S, since 7(y) > 0 for all y € S. Hence, we arrive at P, {&;1 N &} =1
for all y € S, and employing Remark 1 again yields

Po{&iN&} =Y pyPy {&n&}=> uly) =

y€eS yEeS

11



for any initial distribution p(-) : S — [0, 1] of the Markov chain.
Finally, for every w € £ N &2, one can see that lim,_,~ K, (w) = 400 since E, [T;] < +00. Thus,

Kn(w) K’n(w)
.1 Fon g Kp(w) 1 f
Jim S> 0 Vi) = lim SUE s D Vi)
k=1 k=1
Er VY]
E, [T:]
t
= n(f),
where the step (t) can be verified as follows:
TE+1_1
Ee V] =Be | 3 1)
j=T¥

I
!
3
g
e
~
3
—
~
=
I
\_@
3
x
|
S
——

1<a<b<+40c0 j=a

b—1
= > [ XE VX)) BT = a0, T = b

1<a<b<+4oo | j=a

= (/)
b—1
W) - a)p, {1 = a1k = b}
j=a

= 7(f)> - Br {risr = n}
n=1

W) n-PAT, =n})
n=1

= Tr(f)Ea: [Tx] )

where the steps (u), (v), and (w) hold by the same reason as the steps (0), (p), and (q), respectively. So,

8 (]

IP,,~almost surely, for any initial distribution p(-) of the Markov chain.

(iii) To begin with, we provide the following critical lemma:

Lemma 2. Let {X,,} 2, be a sequence of independent and identically distributed random variables defined
on a probability space (2, F,P) with E[|X1|] < +00. Then,

1 -a.s.
~max {| Xy : b € ]} 223 0 (28)
as n — oQ.

12



Proof of Lemma 2.
Firstly, we fix any € > 0. Then,

ZIP’{|X 1> ne} & Z]P’{|X1| > ne}

_Z/nl {"Xj _n}
z Z/ {’Xl >t}d (29)
/OOOIP{’X;’zt}dt

E[[X]]

€

—~
N

||N

< 400,
where the above steps (x)—(z) can be verified as follows:

(x) the sequence {X,} °, are identically distributed,;

(y) forn—1<t<mn, we haveIF’{lXTl' zn} §]P’{@ zt};

(z) Lemma 2.2.13 in [1].

From the observation (29), we employ the first Borel-Cantelli lemma:

P {limsup{|Xn| > ne}} =
n—oo
So, we conclude that for any € > 0,
i {hminf{\xn\ < ne}} =1 (30)
n—oo

| X

Now, let A, := liminf, o § =

IXn(w)\

< %} for k € N, and A := ;2 A;. From (30), we know P{A} =1 and if
% for all but finitely many n € N. Thus,

lim sup [Xn(w) < 1
n—00 n k

w € A, then

for all k € N, and letting £ — oo yields the desired result.
O

By replacing f by |f| in the statement (i), one can see that {Vk'f . keN } is a sequence of independent
and identically distributed random variables under the canonical probability measure PP, on the sequence
space (€, Foo), for any initial distribution u(-) of the Markov chain, and E, [Vk‘f q < +oo for all k € N.
Applying Lemma 2 gives

1 [f] . n—oo
EmaX{Vk ke [n]} i ) (31)

P,-almost surely. Let

n—oo n

E3 = {wEQO' lim lmax{V'fl( ): ke[n]}ZO}E}"oo;
&4 ::{

w e Qy: THw) < +oo for all/-ceN} € Foo.
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Then, (31) implies P {&3} =1=)_
all y € S. Hence, Remark 1 yields

Pu{&} = nly) -Py{&} = n(y) =

yeS y€eS

yes () - Py {&}. Since m(y) > 0 for all y € S, we have Py {&5} =1 for

TL‘)OO

and this establishes 1 max {V,lf ke [n]}

Markov chain.

0, P,-almost surely, for any initial distribution pu(-) of the

Furthermore, the irreducibility of p(-, -) together with the recurrence of the state x € S yields P, {£4} =1
for all y € S. Therefore, we arrive at P, {€3N &4} =1 for all y € S, thereby from Remark 1,
Pu{Esn&} = uy) Py{€sn&}=> uly) =
yeS yes

for any initial distribution p(-) of the Markov chain. Since we know that P, {€1 N £z}, we finally obtain

PN {51 N&NEN 54} =1 (32)
for any initial distribution () : S — [0,1] of the Markov chain. At this point, we propose the following
decomposition:

n Tp—1 Kn—2 |T5 -1 n

DX =D X+ >0 DD &+ YD f(x)

j=1 j=1 m=1 | j=Tm jekn 1
Te—1 Kn,—2 n

=D XD+ D Vih+ DD FXy)
i=1 m=1 j=rn
which leads to
1 1 Te—1 Kn—2
mjﬂmz&zﬁwwﬁ—) _f2%+f§:f (33)
j=1 j=1 m= TKn—l

(T1) (T2) (T3)

We remark that if w € ENENE3NEy, lim,, o0 Kp(w) = +00. Therefore, it’s clear that lim,,,, (T1)(w) =0,
because w € &4 implies Ty (w) < +o0, and

K (w)-
lim (T2)(w) = lim (1 - K:( )> 2 Z 2vf [Vﬂ : (34)

since w € &. On the other hand,

(T3) ()] < — Z !ﬂ%wﬂ

JerEn @1, (35)
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where the step (a’) holds since n < T ) (w), and the step (b’) is owing to the fact w € £ together with
limy, 00 Kpp(w) = +00. Combining the above pieces (34) and (35) together with the fact lim,, o (T1)(w) =0

deduces

i,y 2o ) =0+ B[] 0 B2 ]

for all w € &N E N E3NE4. Hence, for any w € E1 N E N E3 N Ey,

Tm D3 p ) = am K S )
j=1

n—sco N Ky (w)

=7(f),

where the step (c’) follows from the fact w € &;. So, (32) finishes the proof of the statement (iii).
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