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Throughout this homework, let Z+ denote the set of all non-negative integers, R+ be the set of all non-

negative real numbers, and [a : b] := {a, a+ 1, · · · , b− 1, b} for a, b ∈ Z with a ≤ b. We also write [n] := [1 : n]

for n ∈ N. Moreover,
⊎

denotes the disjoint union, and given a set A and k ∈ Z+,
(
A
k

)
:= {B ⊆ A : |B| = k}.

Also, we use the symbol S instead of S to denote the underlying state space of stochastic processes.

We assume throughout this homework that the underlying state space S is countable and it is equipped

with the discrete σ-field 2S on S. Since
(
S, 2S

)
is a nice measurable space, it admits the canonical construction

in Section 5.2 in [1] of the probability measure Pµ on the sequence space (Ω0,F∞) so that the sequence of

coordinate maps {Xn(ω) := ωn}∞n=0 is a homogeneous Markov chain with initial distribution µ and transition

probability p(·, ·) : S×2S → [0, 1]. We remark that it is conventional to write p(x, y) := p(x, {y}) for x, y ∈ S.

Problem 1 (Exercise 5.6.1. in [1]).

Observe that for any n ∈ Z+, we have 1{Xn+1=0} = 1{X1=0} ◦ θn on Ω0. Thus,

Pµ {Xn+1 = 0} = Eµ
[
1{Xn+1=0}

]
= Eµ

[
1{X1=0} ◦ θn

]
= Eµ

[
Eµ
[
1{X1=0} ◦ θn

∣∣Fn]]
(a)
= Eµ

[
EXn

[
1{X1=0}

]]
= Eµ

[∑
x∈S

EXn
[
1{X1=0}

]
1{Xn=x}

]
= P0 {X1 = 0} · Pµ {Xn = 0}+ P1 {X1 = 0} · Pµ {Xn = 1}

= (1− α)Pµ {Xn = 0}+ β (1− Pµ {Xn = 0})

= β + (1− α− β)Pµ {Xn = 0} ,

(1)

where the step (a) holds by the Markov property (Theorem 5.2.3 in [1]). Here, {Fn := σ (X0, X1, · · · , Xn)}∞n=0

denotes the canonical filtration of the Markov chain {Xn}∞n=0. From (1), we obtain

Pµ {Xn = 0} − β

α+ β
= (1− α− β)

(
Pµ {Xn−1 = 0} − β

α+ β

)
(2)
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for all n ∈ N. Now, we deduce our desired result via induction on n. The case n = 0 is trivial. Now, assume

that we have

Pµ {Xk−1 = 0} =
β

α+ β
+ (1− α− β)k−1

{
µ(0)− β

α+ β

}
(3)

for k ≥ 1. Putting the induction hypothesis (3) into the recursive relation (2) directly yields

Pµ {Xk = 0} =
β

α+ β
+ (1− α− β)k

{
µ(0)− β

α+ β

}
,

which completes the proof.

Problem 2 (Exercise 5.6.2. in [1]).

Since p(·, ·) : S×S→ [0, 1] is irreducible, there is a positive integer K(x, y) ∈ N such that pK(x,y)(x, y) >

0. Due to the aperiodicity of p(·, ·), we have dx = 1 and so there is a positive integer N(x) ∈ N such that

pn(x, x) > 0 for all n ≥ N(x) by Lemma 5.6.5 in [1]. Thus, one has

pn+N(x)+K(x,y)(x, y)
(a)

≥ pn+N(x)(x, x) · pK(x,y)(x, y) > 0 (4)

for all n ∈ Z+, where the step (a) follows from the Chapman-Kolmogorov equation. Let

Γ := max {N(x) +K(x, y) : (x, y) ∈ S× S} ,

which is finite since S× S is finite. Then for any n ≥ Γ,

pn(x, y) > 0, ∀(x, y) ∈ S× S,

since n ≥ Γ ≥ N(x) +K(x, y) for all (x, y) ∈ S× S together with the fact (4). Hence, we have pn(x, y) > 0

for all (x, y) ∈ S× S, for any n ≥ Γ, and it suffices to choose the desired integer m to be greater than Γ.

Remark 1. Let (S,S) be a nice state space, and (Ω0,F∞) denote the sequence space obtained from (S,S).

For any probability measure µ : S → [0, 1] on (S,S), let Pµ denote the canonical probability measure on

the sequence space (Ω0,F∞) constructed in Section 5.2 of [1] via Kolmogorov’s extension theorem, and

Px := Pδx for x ∈ S, where δx : S → [0, 1] refers to the Dirac measure centered on the state x ∈ S. Then, we

know that

Pµ {E} =

∫
S
µ(dx)Px {E} (5)

for all E ∈ F∞.

Problem 3 (Exercise 5.6.3. in [1]).

To begin with, we note that S2 := S× S is finite.

Claim 1. The transition probability p(·, ·) : S2 × S2 → [0, 1] on S2 defined by

p ((x1, y1), (x2, y2)) := p(x1, x2) · p(y1, y2), ∀(x1, y1), (x2, y2) ∈ S2,

is irreducible and aperiodic.
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Proof of Claim 1.

We first claim that for all n ∈ N,

pn ((x1, y1), (x2, y2)) ≥ pn(x1, x2) · pn(y1, y2), ∀(x1, y1), (x2, y2) ∈ S2. (6)

The proof of the claim (6) hinges upon the induction on n. The case n = 1 is immediate from the definition

of p(·, ·). Now, assume that (6) holds for the case n = k − 1, where k ≥ 2. Then,

pk ((x1, y1), (x2, y2))
(a)
=

∑
(z,w)∈S2

p ((x1, y1), (z, w)) pk−1 ((z, w), (x2, y2))

(b)

≥
∑

(z,w)∈S2

p(x1, z)p(y1, w) · pk−1(z, x2)pk−1(w, y2)

=

{∑
z∈S

p(x1, z)p
k−1(z, x2)

}{∑
w∈S

p(y1, w)pk−1(w, y2)

}
(c)
= pk(x1, x2)pk(y1, y2),

and this proves the claim (6). Here, the above steps (a)–(c) can be justified as follows:

(a) the Chapman-Kolmogorov equation;

(b) the induction hypothesis;

(c) the same reason as the step (a).

Due to the irreducibility of p(·, ·), there are positive integers K,L ∈ N such that

pK(x1, x2) > 0 and pL(y1, y2) > 0.

Also from the aperiodicity of p(·, ·), there is a positive integer N0 ∈ N such that

pn(x1, x1) > 0 and pn(y1, y1) > 0

for all n ≥ N0. Thus, we have for every n ≥ N0,

pL+n+K(x1, x2)
(d)

≥ pL+n(x1, x1) · pK(x1, x2) > 0;

pK+n+L(y1, y2)
(e)

≥ pK+n(y1, y1) · pL(y1, y2) > 0,

(7)

where the step (d) and (e) are consequences of the Chapman-Kolmogorov equation. So for all n ≥ K+L+N0,

one has

pn ((x1, y1), (x2, y2))
(f)

≥ pn(x1, x2) · pn(y1, y2)
(g)
> 0, (8)

where the step (f) is due to Claim 1, and the step (g) is due to (7), and this establishes the irreducibility of

p(·, ·). Note that the integer K+L+N0 depends on the choice of two states (x1, y1), (x2, y2) ∈ S2. Moreover,

putting (x1, y1) = (x2, y2) = (x, y) ∈ S2 into the inequality (8) yields pn ((x, y), (x, y)) > 0 for all but finitely

many n ∈ N. This implies d(x,y) = 1 for all (x, y) ∈ S2, thereby p(·, ·) is aperiodic.
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Combining Claim 1 together with Problem 2 guarantees that there exists a positive integer Γ ∈ N such

that

pΓ ((x1, y1), (x2, y2)) > 0, ∀(x1, y1), (x2, y2) ∈ S2. (9)

Let {Zn := (Xn, Yn)}∞n=0 be the canonical homogeneous Markov chain constructed via the construction on

the sequence space in Section 5.2 of [1] with state space S2 and transition probability p(·, ·) : S2×S2 → [0, 1].

Further we let ∆ :=
{

(x, x) ∈ S2 : x ∈ S
}

denote the diagonal of S2, and

ε := min

{∑
z∈S

pΓ ((x, y), (z, z)) : (x, y) ∈ S2

}
= min

{
P(x,y) {ZΓ ∈ ∆} : (x, y) ∈ S2

}
> 0.

At this point, recall that T := inf {n ≥ 1 : Zn ∈ ∆}. Then, we have

P(x,y) {T > Γ} = P(x,y)

{
Z1 ∈ S2 \∆, Z2 ∈ S2 \∆, · · · , ZΓ ∈ S2 \∆

}
≤ P(x,y)

{
ZΓ ∈ S2 \∆

}
= 1− P(x,y) {ZΓ ∈ ∆}

≤ 1− ε

(10)

for all (x, y) ∈ S2. Thanks to Remark 1, we arrive at

Pν {T > Γ} =
∑

(x,y)∈S2

ν(x, y) · P(x,y) {T > Γ}

≤ (1− ε)
∑

(x,y)∈S2

ν(x, y)

= 1− ε,

(11)

where ν(·) : S2 → [0, 1] is any initial distribution {Zn}∞n=0. One can observe that for each k ≥ 2, we have

that if T (ω) > (k − 1)Γ,

1{T>Γ} ◦ θ(k−1)Γ(ω) =

1 if Z1

(
θ(k−1)Γ(ω)

)
∈ S2 \∆, · · · , ZΓ

(
θ(k−1)Γ(ω)

)
∈ S2 \∆;

0 otherwise

=

1 if Z(k−1)Γ+1(ω) ∈ S2 \∆, · · · , ZkΓ(ω) ∈ S2 \∆;

0 otherwise

(h)
=

1 if Z1(ω) ∈ S2 \∆, · · · , ZkΓ(ω) ∈ S2 \∆;

0 otherwise

= 1{T>kΓ}(ω),

where the step (h) holds since T (ω) > (k − 1)Γ. In other words,

1{T>kΓ} =
(
1{T>Γ} ◦ θ(k−1)Γ

)
1{T>(k−1)Γ} (12)
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on
(
S2
)Z+ . Here, θn :

(
S2
)Z+ →

(
S2
)Z+ denotes the shift operator on

(
S2
)Z+ . Therefore,

Pν {T > kΓ} = Eν
[
1{T>kΓ}

]
(i)
= Eν

[(
1{T>Γ} ◦ θ(k−1)Γ

)
1{T>(k−1)Γ}

]
= Eν

[
Eν
[(
1{T>Γ} ◦ θ(k−1)Γ

)
1{T>(k−1)Γ}

∣∣FZ
(k−1)Γ

]]
(j)
= Eν

[
Eν
[
1{T>Γ} ◦ θ(k−1)Γ

∣∣FZ
(k−1)Γ

]
1{T>(k−1)Γ}

]
(k)
= Eν

[
EZ(k−1)Γ

[
1{T>Γ}

]
1{T>(k−1)Γ}

]
(l)

≤ (1− ε)Pν {T > (k − 1)Γ} ,

(13)

where the above steps (i)–(l) can be validated as follows:

(i) the equality (12);

(j) {T > (k − 1)Γ} =
(
S2
)Z+ \ {T ≤ (k − 1)Γ} ∈ FZ

(k−1)Γ, since T is a stopping time with respect to the

canonical filtration
{
FZ
n

}∞
n=0

denotes the canonical filtration of the Markov chain {Zn}∞n=0, where

FZ
n := σ (Z0, Z1, · · · , Zn) = σ ((X0, Y0), (X1, Y1), · · · , (Xn, Yn))

for each n ∈ Z+;

(k) the Markov property (Theorem 5.2.3 in [1]);

(l) the inequality (11).

So, we may inductively deduce from (13) that

Pν {T > kΓ} ≤ (1− ε)k (14)

for every k ∈ Z+. Note that the bound (14) holds for any initial distribution ν(·) : S2 → [0, 1] of the Markov

chain {Zn}∞n=0.

Finally, choose any n ∈ Z+ and let k :=
⌊
n
Γ

⌋
∈ Z+. Since kΓ ≤ n < (k + 1)Γ, we know n

Γ − 1 < k ≤ n
Γ .

Hence,

Pν {T > n} ≤ Pν {T > kΓ}
(m)

≤ (1− ε)k

(n)

≤ (1− ε)
n
Γ
−1

=
1

1− ε
·
{

(1− ε)
1
Γ

}n
,

(15)

where the step (m) makes use of the bound (14), and the step (n) holds since 0 < 1− ε < 1 and k > n
Γ − 1.

By letting C := 1
1−ε ∈ (0,+∞) and r := (1− ε)

1
Γ ∈ (0, 1), the bound (15) establishes the desired result.

Problem 4 (Exercise 5.6.5. in [1]: Strong law for additive functionals).

(i) We first prove the following useful result inspired by Exercise 5.3.1 in [1]:
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Lemma 1. Let {Xn}∞n=0 be a homogeneous Markov chain with countable state space S and transition proba-

bility p(·, ·) : S×S→ [0, 1], and x ∈ S be a recurrent state of the chain. For k ∈ N, let τk := T kx −T k−1
x be the

k-th inter-arrival time to state x, and Vk :=
(
τk, XTk−1

x
, XTk−1

x +1, · · · , XTkx−1

)
. Then given any probability

distribution µ(·) : S → [0, 1], the sequence of random vectors {Vk : k ≥ 2} are independent and identically

distributed under the canonical probability measure Pµ defined on the sequence space (Ω0,F∞), conditionally

on the event {Tx < +∞}, where Tx := T 1
x is the first hitting time to state x.

Proof of Lemma 1.

To begin with, we may observe that if T k−1
x (ω) < +∞, then 1{V1=v} ◦ θTk−1

x
= 1{Vk=v} for all k ≥ 2 and

v ∈ V :=
⋃∞
n=1 ({n} × Sn). That is,

1{Vk=v} =
(
1{V1=v} ◦ θTk−1

x

)
1{Tk−1

x <+∞} (16)

on Ω0, since {Vk = v} ⊆
{
T kx < +∞

}
⊆
{
T k−1
x < +∞

}
. Thus, for every k ≥ 2, one has

Pµ
{
Vk = v| FTk−1

x

}
= Eµ

[
1{Vk=v}

∣∣FTk−1
x

]
(a)
= Eµ

[(
1{V1=v} ◦ θTk−1

x

)
1{Tk−1

x <+∞}
∣∣∣FTk−1

x

]
(b)
= Eµ

[
1{V1=v} ◦ θTk−1

x

∣∣∣FTk−1
x

]
1{Tk−1

x <+∞}
(c)
= EX

Tk−1
x

[
1{V1=v}

]
1{Tk−1

x <+∞}
(d)
= Ex

[
1{V1=v}

]
1{Tk−1

x <+∞}
= Px {V1 = v}1{Tk−1

x <+∞}

(17)

Pµ-almost surely, where the above steps (a)–(d) can be justified as follows:

(a) the equality (16);

(b)
{
T k−1
x < +∞

}
∈ FTk−1

x
, since{
T k−1
x < +∞

}
∩
{
T k−1
x = n

}
=
{
T k−1
x = n

}
∈ FTk−1

x

for every n ∈ Z+;

(c) the strong Markov property (Theorem 5.2.5 in [1]);

(d) if T k−1
x < +∞, then XTk−1

x
= x for k ≥ 2.

One can immediately deduce from (17) that

Pµ {Vk = v} = Eµ
[
Pµ
{
Vk = v| FTk−1

x

}]
= Px {V1 = v}Pµ

{
T k−1
x < +∞

}
. (18)

At this point, we claim that for all k ∈ N, Pµ
{
T kx < +∞

}
= Pµ {Tx < +∞}. If k = 1, there’s nothing to

6



prove and we may assume that k ≥ 2. One can easily see that if T k−1
x (ω) < +∞, then

(
1{Tx<+∞} ◦ θTk−1

x

)
(ω) =

1 if Xn

(
θTk−1

x
(ω)
)

= x for some n > 0;

0 otherwise

=

1 if Xn(ω) = x for some n > T k−1
x (ω);

0 otherwise

= 1{Tkx<+∞}(ω).

More succinctly, we have

1{Tkx<+∞} =
(
1{Tx<+∞} ◦ θTk−1

x

)
1{Tk−1

x <+∞} (19)

on Ω0. Hence,

Pµ
{
T kx < +∞

}
= Eµ

[
1{Tkx<+∞}

]
(e)
= Eµ

[(
1{Tx<+∞} ◦ θTk−1

x

)
1{Tk−1

x <+∞}
]

= Eµ
[
Eµ
[(
1{Tx<+∞} ◦ θTk−1

x

)
1{Tk−1

x <+∞}
∣∣∣FTk−1

x

]]
(f)
=
[
Eµ
[
1{Tx<+∞} ◦ θTk−1

x

∣∣∣FTk−1
x

]
1{Tk−1

x <+∞}
]

(g)
= Eµ

[
EX

Tk−1
x

[
1{Tx<+∞}

]
1{Tk−1

x <+∞}
]

(h)
= Eµ

[
Ex
[
1{Tx<+∞}

]
1{Tk−1

x <+∞}
]

= ρxx · Pµ
{
T k−1
x < +∞

}
(i)
= Pµ

{
T k−1
x < +∞

}
,

(20)

where the above steps (e)–(i) hold since:

(e) the equality (19);

(f) the same reason as the step (b);

(g) the same reason as the step (c);

(h) the same reason as the step (d);

(i) ρxx = 1, because the state x ∈ S is recurrent,

thereby one can deduce our desired claim from (20) inductively. So, the equation (18) becomes

Px {V1 = v}Pµ {Tx < +∞} = Pµ {Vk = v} (j)
= Pµ {Vk = v, Tx < +∞} ,

where the step (j) holds since {Vk = v} ⊆ {Tx < +∞}, thereby we arrive at

Px {V1 = v} = Pµ {Vk = v|Tx < +∞} (21)

for all k ≥ 2. Thus, {Vk : k ≥ 2} are identically distributed under the canonical probability measure Pµ on

the sequence space (Ω0,F∞), conditionally on the event {Tx < +∞}.
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As the final step, it remains to establish the conditional independence of the sequence {Vk : k ≥ 2} given

the event {Tx < +∞}. Let {vk : k ≥ 2} be any sequence in V. Since Pµ {Tx < +∞} = Pµ
{
T kx < +∞

}
for

all k ∈ N, we know that 1Pµ{Tx<+∞}
Pµ-a.s.

= 1Pµ{Tkx<+∞} for all k ∈ N. Let us begin our argument from the

equation (17): for every k ≥ 2,

Pµ
{
Vk = vk| FTk−1

x

} Pµ-a.s.
= Px {V1 = vk}1{Tx<+∞}. (22)

It is easy to see that {V2 = v2, V3 = v3, · · · , Vk−1 = vk−1} ∈ FTk−1
x

, so

Pµ {V2 = v2, V3 = v3, · · · , Vk = vk}

=

∫
{V2=v2,V3=v3,··· ,Vk−1=vk−1}

1{Vk=vk}dPµ

(k)
=

∫
{V2=v2,V3=v3,··· ,Vk−1=vk−1}

Px {V1 = vk}1{Tx<+∞}dPµ

= Px {V1 = vk}Pµ {V2 = v2, V3 = v3, · · · , Vk−1 = vk−1, Tx < +∞}
(l)
= Pµ {Vk = vk|Tx < +∞}Pµ {V2 = v2, V3 = v3, · · · , Vk−1 = vk−1|Tx < +∞}Pµ {Tx < +∞} ,

(23)

where the step (k) comes from (22), and the step (l) is due to the equation (21). Hence, we reach

Pµ {V2 = v2, V3 = v3, · · · , Vk−1 = vk−1|Tx < +∞}Pµ {Vk = vk|Tx < +∞}

=
Pµ {V2 = v2, V3 = v3, · · · , Vk = vk}

Pµ {Tx < +∞}
(m)
=

Pµ {V2 = v2, V3 = v3, · · · , Vk = vk, Tx < +∞}
Pµ {Tx < +∞}

= Pµ {V2 = v2, V3 = v3, · · · , Vk = vk|Tx < +∞} ,

(24)

where the step (m) holds since {V2 = v2, V3 = v3, · · · , Vk = vk} ⊆ {Tx < +∞}. Therefore, we may induc-

tively conclude that

Pµ {V2 = v2, V3 = v3, · · · , Vn = vn|Tx < +∞} =

n∏
k=2

Pµ {Vk = vk|Tx < +∞}

for all n ≥ 2 and v2, v3, · · · , vn ∈ V. Hence, {Vk : k ≥ 2} is a sequence of independent and identically

distributed random vectors under Pµ defined on (Ω0,F∞), conditionally on the event {Tx < +∞}.

Now, it’s time to complete the proof of the statement (i). Since p(·, ·) is irreducible and has a stationary

distribution π(·) : S→ [0, 1], it is positive recurrent by Theorem 5.5.12 in [1]. Thanks to Lemma 1, for any

state x ∈ S, the sequence of random vectors,{
Vk :=

(
τk, XTk−1

x
, XTk−1

x +1, · · · , XTkx−1

)
: k ≥ 2

}
,

are independent and identically distributed under Pµ, conditionally on the event {Tx < +∞}. Here, we may

observe that for any event E ∈ F∞,

Pµ {E} = Pµ {E|Tx < +∞}Pµ {Tx < +∞}+ Pµ {E|Tx = +∞}Pµ {Tx = +∞}
(n)
= Pµ {E|Tx < +∞} ,

(25)
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where the step (n) can be justified as follows: since p(·, ·) is irreducible and the state x ∈ S is recurrent,

ρyx = 1 for all y ∈ S due to Theorem 5.3.2 in [1]. So, Remark 1 implies

Pµ {Tx < +∞} =
∑
y∈S

µ(y) · Py {Tx < +∞} =
∑
y∈S

µ(y) · ρyx = 1,

as desired. From the observation (25), one can see from Lemma 1 that {Vk}∞k=2 is a sequence of indepen-

dent and identically distributed random vectors under the canonical probability measure Pµ defined on the

sequence space (Ω0,F∞), not necessarily conditionally on the event {Tx < +∞}. Furthermore, we obtain

from (21) together with the observation (25) that

Px {V1 = v} = Pµ {Vk = v} (26)

for all k ≥ 2 and v ∈ V. Now, define the function F : V→ R by

F (n, x0, x1, · · · , xn−1) :=
n−1∑
j=0

f(xj), ∀ (n, x0, x1, · · · , xn−1) ∈ V.

Since V f
k = F (Vk+1) for k ∈ N,

{
V f
k

}∞
k=1

is a sequence of independent and identically distributed random

variables under Pµ, for any initial distribution µ(·) : S→ [0, 1] of the Markov chain.

It still remains to prove the Pπ-integrability of V f
k for k ≥ 2, i.e., Eπ

[∣∣∣V f
k

∣∣∣] < +∞ for all k ≥ 2. To

begin with, we introduce the following conventions:

π(f) :=
∑
y∈S

f(y)π(y) and π (|f |) :=
∑
y∈S
|f(y)|π(y).
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Then, the following bound holds:

Eπ
[∣∣∣V f

k

∣∣∣] = Eπ

∣∣∣∣∣∣
Tk+1
x −1∑
j=Tkx

f(Xj)

∣∣∣∣∣∣


≤ Eπ

Tk+1
x −1∑
j=Tkx

|f(Xj)|


(o)
=

∑
1≤a<b<+∞

Eπ

Tk+1
x −1∑
j=Tkx

|f(Xj)|

∣∣∣∣∣∣T kx = a, T k+1
x = b

Pπ
{
T kx = a, T k+1

x = b
}

=
∑

1≤a<b<+∞
Eπ

b−1∑
j=a

|f(Xj)|

Pπ
{
T kx = a, T k+1

x = b
}

=
∑

1≤a<b<+∞

b−1∑
j=a

Eπ [|f(Xj)|]︸ ︷︷ ︸
= π(|f |)

Pπ
{
T kx = a, T k+1

x = b
}

(p)
= π (|f |)

b−1∑
j=a

(b− a)Pπ
{
T kx = a, T k+1

x = b
}

= π (|f |)
∞∑
n=1

n · Pπ {τk+1 = n}

(q)
= π (|f |)

∞∑
n=1

n · Px {Tx = n}

= π (|f |)Ex [Tx]
(r)
< +∞,

where the above steps (o)–(r) can be validated as follows:

(o) we have Pπ
{
T kx < +∞

}
= 1 for all n ∈ N due to Remark 1;

(p) π(·) : S→ [0, 1] is a stationary distribution for p(·, ·);

(q) from (26), we get

Px {Tx = n} = Pµ {τk = n}

for all n ∈ N, k ≥ 2, and any initial distribution µ(·) of the Markov chain;

(r) the state x ∈ S is positive recurrent,

and this completes the proof of the statement (i).
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(ii) Firstly, one can see that

Kn := inf
{
k ∈ Z+ : T kx ≥ n

}
= inf

{
k ∈ Z+ : T kx > n− 1

}
= inf

k ∈ Z+ :
n−1∑
j=1

1{Xj=x} ≤ k − 1


=

n−1∑
j=1

1{Xj=x} + 1

= Nn−1(x) + 1.

(27)

We defined the events

E1 :=

{
ω ∈ Ω0 : lim

n→∞

Kn(ω)

n
=

1

Ex [Tx]

}
∈ F∞;

E2 :=

{
ω ∈ Ω0 : lim

n→∞

1

n

n∑
k=1

V f
k (ω) = Eπ

[
V f

1

]}
∈ F∞.

Due to Theorem 5.6.1 in [1], we know that for any state y ∈ S,

Nn(x)

n

n→∞−→ 1

Ex [Tx]
1{Tx<+∞}

(r)
=

1

Ex [Tx]

Py-almost surely, where the step (r) follows from the fact Py {Tx < +∞} = ρyx = 1 for every y ∈ S, which

holds by Theorem 5.3.2 in [1]. Thus,

Kn

n

(s)
=
Nn−1

n− 1

(
1− 1

n

)
+

1

n

n→∞−→ 1

Ex [Tx]

Py-almost surely, where the step (s) makes use of the observation (27). So, we get Py {E1} = 1 for all y ∈ S.

On the other hand, we know from the statement (i) that Eπ
[∣∣∣V f

k

∣∣∣] < +∞ for all k ≥ 2. The strong law

of large number yields Pπ {E2} = 1. Since the transition probability p(·, ·) is irreducible, there is a positive

integer K(x, y) ∈ N such that pK(x,y)(x, y) > 0 for every (x, y) ∈ S × S. If there exists a state z ∈ S such

that π(z) = 0, then

0 = π(z) =
∑
x∈S

π(x) · pK(y,z)(x, z) ≥ π(y) · pK(y,z)(y, z),

which implies π(y) = 0 for all y ∈ S. This violates the fact that π(·) has total mass 1, i.e.,
∑

x∈S π(x) = 1,

and therefore we find that π(x) > 0 for all x ∈ S. Remark 1 implies

1 = Pπ {E2} =
∑
y∈S

π(y)Py {E2} ,

and this yields Py {E2} = 1 for all y ∈ S, since π(y) > 0 for all y ∈ S. Hence, we arrive at Py {E1 ∩ E2} = 1

for all y ∈ S, and employing Remark 1 again yields

Pµ {E1 ∩ E2} =
∑
y∈S

µ(y)Py {E1 ∩ E2} =
∑
y∈S

µ(y) = 1

11



for any initial distribution µ(·) : S→ [0, 1] of the Markov chain.

Finally, for every ω ∈ E1 ∩ E2, one can see that limn→∞Kn(ω) = +∞ since Ex [Tx] < +∞. Thus,

lim
n→∞

1

n

Kn(ω)∑
k=1

V f
k (ω) = lim

n→∞

Kn(ω)

n
· 1

Kn(ω)

Kn(ω)∑
k=1

V f
k (ω)

=
Eπ
[
V f

1

]
Ex [Tx]

(t)
= π(f),

where the step (t) can be verified as follows:

Eπ
[
V f

1

]
= Eπ

Tk+1
x −1∑
j=Tkx

f(Xj)


(u)
=

∑
1≤a<b<+∞

Eπ

Tk+1
x −1∑
j=Tkx

f(Xj)

∣∣∣∣∣∣T kx = a, T k+1
x = b

Pπ
{
T kx = a, T k+1

x = b
}

=
∑

1≤a<b<+∞
Eπ

b−1∑
j=a

f(Xj)

Pπ
{
T kx = a, T k+1

x = b
}

=
∑

1≤a<b<+∞

b−1∑
j=a

Eπ [f(Xj)]︸ ︷︷ ︸
= π(f)

Pπ
{
T kx = a, T k+1

x = b
}

(v)
= π(f)

b−1∑
j=a

(b− a)Pπ
{
T kx = a, T k+1

x = b
}

= π(f)
∞∑
n=1

n · Pπ {τk+1 = n}

(w)
= π(f)

∞∑
n=1

n · Px {Tx = n}

= π(f)Ex [Tx] ,

where the steps (u), (v), and (w) hold by the same reason as the steps (o), (p), and (q), respectively. So,

1

n

Kn∑
m=1

V f
m
n→∞−→

Eπ
[
V f

1

]
Ex [Tx]

= π(f)

Pµ-almost surely, for any initial distribution µ(·) of the Markov chain.

(iii) To begin with, we provide the following critical lemma:

Lemma 2. Let {Xn}∞n=1 be a sequence of independent and identically distributed random variables defined

on a probability space (Ω,F ,P) with E [|X1|] < +∞. Then,

1

n
max {|Xk| : k ∈ [n]} P-a.s.−→ 0 (28)

as n→∞.
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Proof of Lemma 2.

Firstly, we fix any ε > 0. Then,

∞∑
n=1

P {|Xn| ≥ nε}
(x)
=

∞∑
n=1

P {|X1| ≥ nε}

=
∞∑
n=1

∫ n

n−1
P
{
|X1|
ε
≥ n

}
dt

(y)

≤
∞∑
n=1

∫ n

n−1
P
{
|X1|
ε
≥ t
}

dt

=

∫ ∞
0

P
{
|X1|
ε
≥ t
}

dt

(z)
=

E [|X1|]
ε

< +∞,

(29)

where the above steps (x)–(z) can be verified as follows:

(x) the sequence {Xn}∞n=1 are identically distributed;

(y) for n− 1 ≤ t ≤ n, we have P
{
|X1|
ε ≥ n

}
≤ P

{
|X1|
ε ≥ t

}
;

(z) Lemma 2.2.13 in [1].

From the observation (29), we employ the first Borel-Cantelli lemma:

P
{

lim sup
n→∞

{|Xn| ≥ nε}
}

= 0.

So, we conclude that for any ε > 0,

P
{

lim inf
n→∞

{|Xn| < nε}
}

= 1. (30)

Now, let Ak := lim infn→∞

{
|Xn|
n < 1

k

}
for k ∈ N, and A :=

⋂∞
k=1Ak. From (30), we know P {A} = 1 and if

ω ∈ A, then |Xn(ω)|
n < 1

k for all but finitely many n ∈ N. Thus,

lim sup
n→∞

|Xn(ω)|
n

≤ 1

k

for all k ∈ N, and letting k →∞ yields the desired result.

By replacing f by |f | in the statement (i), one can see that
{
V
|f |
k : k ∈ N

}
is a sequence of independent

and identically distributed random variables under the canonical probability measure Pµ on the sequence

space (Ω0,F∞), for any initial distribution µ(·) of the Markov chain, and Eπ
[
V
|f |
k

]
< +∞ for all k ∈ N.

Applying Lemma 2 gives
1

n
max

{
V
|f |
k : k ∈ [n]

}
n→∞−→ 0 (31)

Pπ-almost surely. Let

E3 :=

{
ω ∈ Ω0 : lim

n→∞

1

n
max

{
V
|f |
k (ω) : k ∈ [n]

}
= 0

}
∈ F∞;

E4 :=
{
ω ∈ Ω0 : T kx (ω) < +∞ for all k ∈ N

}
∈ F∞.
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Then, (31) implies Pπ {E3} = 1 =
∑

y∈S π(y) · Py {E3}. Since π(y) > 0 for all y ∈ S, we have Py {E3} = 1 for

all y ∈ S. Hence, Remark 1 yields

Pµ {E3} =
∑
y∈S

µ(y) · Py {E3} =
∑
y∈S

µ(y) = 1,

and this establishes 1
n max

{
V
|f |
k : k ∈ [n]

}
n→∞−→ 0, Pµ-almost surely, for any initial distribution µ(·) of the

Markov chain.

Furthermore, the irreducibility of p(·, ·) together with the recurrence of the state x ∈ S yields Py {E4} = 1

for all y ∈ S. Therefore, we arrive at Py {E3 ∩ E4} = 1 for all y ∈ S, thereby from Remark 1,

Pµ {E3 ∩ E4} =
∑
y∈S

µ(y) · Py {E3 ∩ E4} =
∑
y∈S

µ(y) = 1

for any initial distribution µ(·) of the Markov chain. Since we know that Pµ {E1 ∩ E2}, we finally obtain

Pµ {E1 ∩ E2 ∩ E3 ∩ E4} = 1 (32)

for any initial distribution µ(·) : S → [0, 1] of the Markov chain. At this point, we propose the following

decomposition:

n∑
j=1

f(Xj) =

Tx−1∑
j=1

f(Xj) +

Kn−2∑
m=1

Tm+1
x −1∑
j=Tmx

f(Xj)

+

n∑
j=TKn−1

x

f(Xj)

=

Tx−1∑
j=1

f(Xj) +

Kn−2∑
m=1

V f
m +

n∑
j=TKn−1

x

f(Xj),

which leads to

1

Kn

n∑
j=1

f(Xj) =
1

Kn

Tx−1∑
j=1

f(Xj)︸ ︷︷ ︸
(T1)

+

(
1− 2

Kn

)
1

Kn − 2

Kn−2∑
m=1

V f
m︸ ︷︷ ︸

(T2)

+
1

Kn

n∑
j=TKn−1

x

f(Xj)

︸ ︷︷ ︸
(T3)

. (33)

We remark that if w ∈ E1∩E2∩E3∩E4, limn→∞Kn(ω) = +∞. Therefore, it’s clear that limn→∞ (T1)(ω) = 0,

because ω ∈ E4 implies Tx(ω) < +∞, and

lim
n→∞

(T2)(ω) = lim
n→∞

(
1− 2

Kn(ω)

)
1

Kn(ω)− 2

Kn(ω)−2∑
m=1

V f
m(ω) = Eπ

[
V f

1

]
, (34)

since ω ∈ E2. On the other hand,

|(T3)(ω)| ≤ 1

Kn(ω)

n∑
j=T

Kn(ω)−1
x (ω)

|f (Xj(ω))|

(a’)

≤ 1

Kn(ω)

T
Kn(ω)
x (ω)∑

j=T
Kn(ω)−1
x (ω)

|f (Xj(ω))|

=
1

Kn(ω)
V
|f |
Kn(ω)−1(ω)

≤ 1

Kn(ω)
max

{
V |f |m : m ∈ [Kn(ω)]

}
(b’)→ 0,

(35)
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where the step (a’) holds since n ≤ T
Kn(ω)
x (ω), and the step (b’) is owing to the fact ω ∈ E3 together with

limn→∞Kn(ω) = +∞. Combining the above pieces (34) and (35) together with the fact limn→∞ (T1)(ω) = 0

deduces

lim
n→∞

1

Kn(ω)

n∑
j=1

f (Xj(ω)) = 0 + Eπ
[
V f

1

]
+ 0 = Eπ

[
V f

1

]
for all w ∈ E1 ∩ E2 ∩ E3 ∩ E4. Hence, for any w ∈ E1 ∩ E2 ∩ E3 ∩ E4,

lim
n→∞

1

n

n∑
j=1

f (Xj(ω)) = lim
n→∞

Kn(ω)

n
· 1

Kn(ω)

n∑
j=1

f (Xj(ω))

(c’)
=

Eπ
[
V f

1

]
Ex [Tx]

= π(f),

(36)

where the step (c’) follows from the fact ω ∈ E1. So, (32) finishes the proof of the statement (iii).
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