MAS651 Theory of Stochastic Processes Homework \#5

20150597 Jeonghwan Lee

Department of Mathematical Sciences, KAIST

April 7, 2021

Throughout this homework, let \mathbb{Z}_{+}denote the set of all non-negative integers, \mathbb{R}_{+}be the set of all nonnegative real numbers, and $[a: b]:=\{a, a+1, \cdots, b-1, b\}$ for $a, b \in \mathbb{Z}$ with $a \leq b$. We also write $[n]:=[1: n]$ for $n \in \mathbb{N}$. Moreover, \biguplus denotes the disjoint union, and given a set A and $k \in \mathbb{Z}_{+},\binom{A}{k}:=\{B \subseteq A:|B|=k\}$. Also, we use the symbol \mathbb{S} instead of S to denote the underlying state space of stochastic processes.

We assume throughout this homework that the underlying state space \mathbb{S} is countable and it is equipped with the discrete σ-field $2^{\mathbb{S}}$ on \mathbb{S}. Since $\left(\mathbb{S}, 2^{\mathbb{S}}\right)$ is a nice measurable space, it admits the canonical construction in Section 5.2 in [1] of the probability measure \mathbb{P}_{μ} on the sequence space $\left(\Omega_{0}, \mathcal{F}_{\infty}\right)$ so that the sequence of coordinate maps $\left\{X_{n}(\omega):=\omega_{n}\right\}_{n=0}^{\infty}$ is a homogeneous Markov chain with initial distribution μ and transition probability $p(\cdot, \cdot): \mathbb{S} \times 2^{\mathbb{S}} \rightarrow[0,1]$. We remark that it is conventional to write $p(x, y):=p(x,\{y\})$ for $x, y \in \mathbb{S}$.

Problem 1 (Exercise 5.6.1. in [1]).
Observe that for any $n \in \mathbb{Z}_{+}$, we have $\mathbb{1}_{\left\{X_{n+1}=0\right\}}=\mathbb{1}_{\left\{X_{1}=0\right\}} \circ \theta_{n}$ on Ω_{0}. Thus,

$$
\begin{align*}
\mathbb{P}_{\mu}\left\{X_{n+1}=0\right\} & =\mathbb{E}_{\mu}\left[\mathbb{1}_{\left\{X_{n+1}=0\right\}}\right] \\
& =\mathbb{E}_{\mu}\left[\mathbb{1}_{\left\{X_{1}=0\right\}} \circ \theta_{n}\right] \\
& =\mathbb{E}_{\mu}\left[\mathbb{E}_{\mu}\left[\mathbb{1}_{\left\{X_{1}=0\right\}} \circ \theta_{n} \mid \mathcal{F}_{n}\right]\right] \\
& \stackrel{(a)}{=} \mathbb{E}_{\mu}\left[\mathbb{E}_{X_{n}}\left[\mathbb{1}_{\left\{X_{1}=0\right\}}\right]\right] \\
& =\mathbb{E}_{\mu}\left[\sum_{x \in \mathbb{S}} \mathbb{E}_{X_{n}}\left[\mathbb{1}_{\left\{X_{1}=0\right\}}\right] \mathbb{1}_{\left\{X_{n}=x\right\}}\right] \tag{1}\\
& =\mathbb{P}_{0}\left\{X_{1}=0\right\} \cdot \mathbb{P}_{\mu}\left\{X_{n}=0\right\}+\mathbb{P}_{1}\left\{X_{1}=0\right\} \cdot \mathbb{P}_{\mu}\left\{X_{n}=1\right\} \\
& =(1-\alpha) \mathbb{P}_{\mu}\left\{X_{n}=0\right\}+\beta\left(1-\mathbb{P}_{\mu}\left\{X_{n}=0\right\}\right) \\
& =\beta+(1-\alpha-\beta) \mathbb{P}_{\mu}\left\{X_{n}=0\right\},
\end{align*}
$$

where the step (a) holds by the Markov property (Theorem 5.2.3 in [1]). Here, $\left\{\mathcal{F}_{n}:=\sigma\left(X_{0}, X_{1}, \cdots, X_{n}\right)\right\}_{n=0}^{\infty}$ denotes the canonical filtration of the Markov chain $\left\{X_{n}\right\}_{n=0}^{\infty}$. From (1), we obtain

$$
\begin{equation*}
\mathbb{P}_{\mu}\left\{X_{n}=0\right\}-\frac{\beta}{\alpha+\beta}=(1-\alpha-\beta)\left(\mathbb{P}_{\mu}\left\{X_{n-1}=0\right\}-\frac{\beta}{\alpha+\beta}\right) \tag{2}
\end{equation*}
$$

for all $n \in \mathbb{N}$. Now, we deduce our desired result via induction on n. The case $n=0$ is trivial. Now, assume that we have

$$
\begin{equation*}
\mathbb{P}_{\mu}\left\{X_{k-1}=0\right\}=\frac{\beta}{\alpha+\beta}+(1-\alpha-\beta)^{k-1}\left\{\mu(0)-\frac{\beta}{\alpha+\beta}\right\} \tag{3}
\end{equation*}
$$

for $k \geq 1$. Putting the induction hypothesis (3) into the recursive relation (2) directly yields

$$
\mathbb{P}_{\mu}\left\{X_{k}=0\right\}=\frac{\beta}{\alpha+\beta}+(1-\alpha-\beta)^{k}\left\{\mu(0)-\frac{\beta}{\alpha+\beta}\right\},
$$

which completes the proof.
Problem 2 (Exercise 5.6.2. in [1]).
Since $p(\cdot, \cdot): \mathbb{S} \times \mathbb{S} \rightarrow[0,1]$ is irreducible, there is a positive integer $K(x, y) \in \mathbb{N}$ such that $p^{K(x, y)}(x, y)>$ 0 . Due to the aperiodicity of $p(\cdot, \cdot)$, we have $d_{x}=1$ and so there is a positive integer $N(x) \in \mathbb{N}$ such that $p^{n}(x, x)>0$ for all $n \geq N(x)$ by Lemma 5.6.5 in [1]. Thus, one has

$$
\begin{equation*}
p^{n+N(x)+K(x, y)}(x, y) \stackrel{(\mathrm{a})}{\geq} p^{n+N(x)}(x, x) \cdot p^{K(x, y)}(x, y)>0 \tag{4}
\end{equation*}
$$

for all $n \in \mathbb{Z}_{+}$, where the step (a) follows from the Chapman-Kolmogorov equation. Let

$$
\Gamma:=\max \{N(x)+K(x, y):(x, y) \in \mathbb{S} \times \mathbb{S}\}
$$

which is finite since $\mathbb{S} \times \mathbb{S}$ is finite. Then for any $n \geq \Gamma$,

$$
p^{n}(x, y)>0, \forall(x, y) \in \mathbb{S} \times \mathbb{S}
$$

since $n \geq \Gamma \geq N(x)+K(x, y)$ for all $(x, y) \in \mathbb{S} \times \mathbb{S}$ together with the fact (4). Hence, we have $p^{n}(x, y)>0$ for all $(x, y) \in \mathbb{S} \times \mathbb{S}$, for any $n \geq \Gamma$, and it suffices to choose the desired integer m to be greater than Γ.

Remark 1. Let $(\mathbb{S}, \mathcal{S})$ be a nice state space, and $\left(\Omega_{0}, \mathcal{F}_{\infty}\right)$ denote the sequence space obtained from $(\mathbb{S}, \mathcal{S})$. For any probability measure $\mu: \mathcal{S} \rightarrow[0,1]$ on $(\mathbb{S}, \mathcal{S})$, let \mathbb{P}_{μ} denote the canonical probability measure on the sequence space $\left(\Omega_{0}, \mathcal{F}_{\infty}\right)$ constructed in Section 5.2 of [1] via Kolmogorov's extension theorem, and $\mathbb{P}_{x}:=\mathbb{P}_{\delta_{x}}$ for $x \in \mathbb{S}$, where $\delta_{x}: \mathcal{S} \rightarrow[0,1]$ refers to the Dirac measure centered on the state $x \in \mathbb{S}$. Then, we know that

$$
\begin{equation*}
\mathbb{P}_{\mu}\{E\}=\int_{\mathbb{S}} \mu(\mathrm{d} x) \mathbb{P}_{x}\{E\} \tag{5}
\end{equation*}
$$

for all $E \in \mathcal{F}_{\infty}$.
Problem 3 (Exercise 5.6.3. in [1]).
To begin with, we note that $\mathbb{S}^{2}:=\mathbb{S} \times \mathbb{S}$ is finite.
Claim 1. The transition probability $\bar{p}(\cdot, \cdot): \mathbb{S}^{2} \times \mathbb{S}^{2} \rightarrow[0,1]$ on \mathbb{S}^{2} defined by

$$
\bar{p}\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right):=p\left(x_{1}, x_{2}\right) \cdot p\left(y_{1}, y_{2}\right), \forall\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in \mathbb{S}^{2}
$$

is irreducible and aperiodic.

Proof of Claim 1.
We first claim that for all $n \in \mathbb{N}$,

$$
\begin{equation*}
\bar{p}^{n}\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right) \geq p^{n}\left(x_{1}, x_{2}\right) \cdot p^{n}\left(y_{1}, y_{2}\right), \forall\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in \mathbb{S}^{2} . \tag{6}
\end{equation*}
$$

The proof of the claim (6) hinges upon the induction on n. The case $n=1$ is immediate from the definition of $\bar{p}(\cdot, \cdot)$. Now, assume that (6) holds for the case $n=k-1$, where $k \geq 2$. Then,

$$
\begin{aligned}
\bar{p}^{k}\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right) & \stackrel{(\mathrm{a})}{=} \sum_{(z, w) \in \mathbb{S}^{2}} \bar{p}\left(\left(x_{1}, y_{1}\right),(z, w)\right) \bar{p}^{k-1}\left((z, w),\left(x_{2}, y_{2}\right)\right) \\
& \stackrel{(\mathrm{b})}{\geq} \sum_{(z, w) \in \mathbb{S}^{2}} p\left(x_{1}, z\right) p\left(y_{1}, w\right) \cdot p^{k-1}\left(z, x_{2}\right) p^{k-1}\left(w, y_{2}\right) \\
& =\left\{\sum_{z \in \mathbb{S}} p\left(x_{1}, z\right) p^{k-1}\left(z, x_{2}\right)\right\}\left\{\sum_{w \in \mathbb{S}} p\left(y_{1}, w\right) p^{k-1}\left(w, y_{2}\right)\right\} \\
& \stackrel{(\mathrm{c})}{=} p^{k}\left(x_{1}, x_{2}\right) p^{k}\left(y_{1}, y_{2}\right),
\end{aligned}
$$

and this proves the claim (6). Here, the above steps (a)-(c) can be justified as follows:
(a) the Chapman-Kolmogorov equation;
(b) the induction hypothesis;
(c) the same reason as the step (a).

Due to the irreducibility of $p(\cdot, \cdot)$, there are positive integers $K, L \in \mathbb{N}$ such that

$$
p^{K}\left(x_{1}, x_{2}\right)>0 \quad \text { and } \quad p^{L}\left(y_{1}, y_{2}\right)>0 .
$$

Also from the aperiodicity of $p(\cdot, \cdot)$, there is a positive integer $N_{0} \in \mathbb{N}$ such that

$$
p^{n}\left(x_{1}, x_{1}\right)>0 \quad \text { and } \quad p^{n}\left(y_{1}, y_{1}\right)>0
$$

for all $n \geq N_{0}$. Thus, we have for every $n \geq N_{0}$,

$$
\begin{align*}
& p^{L+n+K}\left(x_{1}, x_{2}\right) \stackrel{(\mathrm{d})}{\geq} p^{L+n}\left(x_{1}, x_{1}\right) \cdot p^{K}\left(x_{1}, x_{2}\right)>0 \\
& p^{K+n+L}\left(y_{1}, y_{2}\right) \stackrel{(\mathrm{e})}{\geq} p^{K+n}\left(y_{1}, y_{1}\right) \cdot p^{L}\left(y_{1}, y_{2}\right)>0 \tag{7}
\end{align*}
$$

where the step (d) and (e) are consequences of the Chapman-Kolmogorov equation. So for all $n \geq K+L+N_{0}$, one has

$$
\begin{equation*}
\bar{p}^{n}\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right) \stackrel{(\mathrm{f})}{\geq} p^{n}\left(x_{1}, x_{2}\right) \cdot p^{n}\left(y_{1}, y_{2}\right) \stackrel{(\mathrm{g})}{>} 0, \tag{8}
\end{equation*}
$$

where the step (f) is due to Claim 1, and the step (g) is due to (7), and this establishes the irreducibility of $\bar{p}(\cdot, \cdot)$. Note that the integer $K+L+N_{0}$ depends on the choice of two states $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in \mathbb{S}^{2}$. Moreover, putting $\left(x_{1}, y_{1}\right)=\left(x_{2}, y_{2}\right)=(x, y) \in \mathbb{S}^{2}$ into the inequality (8) yields $\bar{p}^{n}((x, y),(x, y))>0$ for all but finitely many $n \in \mathbb{N}$. This implies $d_{(x, y)}=1$ for all $(x, y) \in \mathbb{S}^{2}$, thereby $\bar{p}(\cdot, \cdot)$ is aperiodic.

Combining Claim 1 together with Problem 2 guarantees that there exists a positive integer $\Gamma \in \mathbb{N}$ such that

$$
\begin{equation*}
\bar{p}^{\Gamma}\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)>0, \forall\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in \mathbb{S}^{2} . \tag{9}
\end{equation*}
$$

Let $\left\{Z_{n}:=\left(X_{n}, Y_{n}\right)\right\}_{n=0}^{\infty}$ be the canonical homogeneous Markov chain constructed via the construction on the sequence space in Section 5.2 of $[1]$ with state space \mathbb{S}^{2} and transition probability $\bar{p}(\cdot, \cdot): \mathbb{S}^{2} \times \mathbb{S}^{2} \rightarrow[0,1]$. Further we let $\Delta:=\left\{(x, x) \in \mathbb{S}^{2}: x \in \mathbb{S}\right\}$ denote the diagonal of \mathbb{S}^{2}, and

$$
\epsilon:=\min \left\{\sum_{z \in \mathbb{S}} \bar{p}^{\Gamma}((x, y),(z, z)):(x, y) \in \mathbb{S}^{2}\right\}=\min \left\{\mathbb{P}_{(x, y)}\left\{Z_{\Gamma} \in \Delta\right\}:(x, y) \in \mathbb{S}^{2}\right\}>0
$$

At this point, recall that $T:=\inf \left\{n \geq 1: Z_{n} \in \Delta\right\}$. Then, we have

$$
\begin{align*}
\mathbb{P}_{(x, y)}\{T>\Gamma\} & =\mathbb{P}_{(x, y)}\left\{Z_{1} \in \mathbb{S}^{2} \backslash \Delta, Z_{2} \in \mathbb{S}^{2} \backslash \Delta, \cdots, Z_{\Gamma} \in \mathbb{S}^{2} \backslash \Delta\right\} \\
& \leq \mathbb{P}_{(x, y)}\left\{Z_{\Gamma} \in \mathbb{S}^{2} \backslash \Delta\right\} \tag{10}\\
& =1-\mathbb{P}_{(x, y)}\left\{Z_{\Gamma} \in \Delta\right\} \\
& \leq 1-\epsilon
\end{align*}
$$

for all $(x, y) \in \mathbb{S}^{2}$. Thanks to Remark 1, we arrive at

$$
\begin{align*}
\mathbb{P}_{\nu}\{T>\Gamma\} & =\sum_{(x, y) \in \mathbb{S}^{2}} \nu(x, y) \cdot \mathbb{P}_{(x, y)}\{T>\Gamma\} \\
& \leq(1-\epsilon) \sum_{(x, y) \in \mathbb{S}^{2}} \nu(x, y) \tag{11}\\
& =1-\epsilon
\end{align*}
$$

where $\nu(\cdot): \mathbb{S}^{2} \rightarrow[0,1]$ is any initial distribution $\left\{Z_{n}\right\}_{n=0}^{\infty}$. One can observe that for each $k \geq 2$, we have that if $T(\omega)>(k-1) \Gamma$,

$$
\begin{aligned}
\mathbb{1}_{\{T>\Gamma\}} \circ \theta_{(k-1) \Gamma}(\omega) & = \begin{cases}1 & \text { if } Z_{1}\left(\theta_{(k-1) \Gamma}(\omega)\right) \in \mathbb{S}^{2} \backslash \Delta, \cdots, Z_{\Gamma}\left(\theta_{(k-1) \Gamma}(\omega)\right) \in \mathbb{S}^{2} \backslash \Delta ; \\
0 & \text { otherwise }\end{cases} \\
& = \begin{cases}1 & \text { if } Z_{(k-1) \Gamma+1}(\omega) \in \mathbb{S}^{2} \backslash \Delta, \cdots, Z_{k \Gamma}(\omega) \in \mathbb{S}^{2} \backslash \Delta ; \\
0 & \text { otherwise }\end{cases} \\
& \stackrel{(\text { h) }}{=} \begin{cases}1 & \text { if } Z_{1}(\omega) \in \mathbb{S}^{2} \backslash \Delta, \cdots, Z_{k \Gamma}(\omega) \in \mathbb{S}^{2} \backslash \Delta ; \\
0 & \text { otherwise }\end{cases} \\
& =\mathbb{1}_{\{T>k \Gamma\}}(\omega),
\end{aligned}
$$

where the step (h) holds since $T(\omega)>(k-1) \Gamma$. In other words,

$$
\begin{equation*}
\mathbb{1}_{\{T>k \Gamma\}}=\left(\mathbb{1}_{\{T>\Gamma\}} \circ \theta_{(k-1) \Gamma}\right) \mathbb{1}_{\{T>(k-1) \Gamma\}} \tag{12}
\end{equation*}
$$

on $\left(\mathbb{S}^{2}\right)^{\mathbb{Z}_{+}}$. Here, $\theta_{n}:\left(\mathbb{S}^{2}\right)^{\mathbb{Z}_{+}} \rightarrow\left(\mathbb{S}^{2}\right)^{\mathbb{Z}_{+}}$denotes the shift operator on $\left(\mathbb{S}^{2}\right)^{\mathbb{Z}_{+}}$. Therefore,

$$
\begin{align*}
\mathbb{P}_{\nu}\{T>k \Gamma\} & =\mathbb{E}_{\nu}\left[\mathbb{1}_{\{T>k \Gamma\}}\right] \\
& \stackrel{(\mathrm{i})}{=} \mathbb{E}_{\nu}\left[\left(\mathbb{1}_{\{T>\Gamma\}} \circ \theta_{(k-1) \Gamma}\right) \mathbb{1}_{\{T>(k-1) \Gamma\}}\right] \\
& =\mathbb{E}_{\nu}\left[\mathbb{E}_{\nu}\left[\left(\mathbb{1}_{\{T>\Gamma\}} \circ \theta_{(k-1) \Gamma}\right) \mathbb{1}_{\{T>(k-1) \Gamma\}} \mid \mathcal{F}_{(k-1) \Gamma}^{\mathbf{Z}}\right]\right] \\
& \stackrel{(\mathrm{j})}{=} \mathbb{E}_{\nu}\left[\mathbb{E}_{\nu}\left[\mathbb{1}_{\{T>\Gamma\}} \circ \theta_{(k-1) \Gamma} \mid \mathcal{F}_{(k-1) \Gamma}^{\mathbf{Z}}\right] \mathbb{1}_{\{T>(k-1) \Gamma\}}\right] \tag{13}\\
& \stackrel{(\mathrm{k})}{=} \mathbb{E}_{\nu}\left[\mathbb{E}_{Z_{(k-1) \Gamma}}\left[\mathbb{1}_{\{T>\Gamma\}}\right] \mathbb{1}_{\{T>(k-1) \Gamma\}}\right] \\
& \stackrel{(1)}{\leq}(1-\epsilon) \mathbb{P}_{\nu}\{T>(k-1) \Gamma\},
\end{align*}
$$

where the above steps (i)-(l) can be validated as follows:
(i) the equality (12);
(j) $\{T>(k-1) \Gamma\}=\left(\mathbb{S}^{2}\right)^{\mathbb{Z}_{+}} \backslash\{T \leq(k-1) \Gamma\} \in \mathcal{F}_{(k-1) \Gamma}^{\mathbf{Z}}$, since T is a stopping time with respect to the canonical filtration $\left\{\mathcal{F}_{n}^{\mathbf{Z}}\right\}_{n=0}^{\infty}$ denotes the canonical filtration of the Markov chain $\left\{Z_{n}\right\}_{n=0}^{\infty}$, where

$$
\mathcal{F}_{n}^{\mathbf{Z}}:=\sigma\left(Z_{0}, Z_{1}, \cdots, Z_{n}\right)=\sigma\left(\left(X_{0}, Y_{0}\right),\left(X_{1}, Y_{1}\right), \cdots,\left(X_{n}, Y_{n}\right)\right)
$$

for each $n \in \mathbb{Z}_{+}$;
(k) the Markov property (Theorem 5.2.3 in [1]);
(l) the inequality (11).

So, we may inductively deduce from (13) that

$$
\begin{equation*}
\mathbb{P}_{\nu}\{T>k \Gamma\} \leq(1-\epsilon)^{k} \tag{14}
\end{equation*}
$$

for every $k \in \mathbb{Z}_{+}$. Note that the bound (14) holds for any initial distribution $\nu(\cdot): \mathbb{S}^{2} \rightarrow[0,1]$ of the Markov chain $\left\{Z_{n}\right\}_{n=0}^{\infty}$.

Finally, choose any $n \in \mathbb{Z}_{+}$and let $k:=\left\lfloor\frac{n}{\Gamma}\right\rfloor \in \mathbb{Z}_{+}$. Since $k \Gamma \leq n<(k+1) \Gamma$, we know $\frac{n}{\Gamma}-1<k \leq \frac{n}{\Gamma}$. Hence,

$$
\begin{align*}
& \mathbb{P}_{\nu}\{T>n\} \leq \mathbb{P}_{\nu}\{T>k \Gamma\} \\
&(\mathrm{m}) \\
& \leq(1-\epsilon)^{k} \tag{15}\\
& \stackrel{(\mathrm{n})}{\leq}(1-\epsilon)^{\frac{n}{\Gamma}-1} \\
&=\frac{1}{1-\epsilon} \cdot\left\{(1-\epsilon)^{\frac{1}{\Gamma}}\right\}^{n},
\end{align*}
$$

where the step (m) makes use of the bound (14), and the step (n) holds since $0<1-\epsilon<1$ and $k>\frac{n}{\Gamma}-1$. By letting $C:=\frac{1}{1-\epsilon} \in(0,+\infty)$ and $r:=(1-\epsilon)^{\frac{1}{\Gamma}} \in(0,1)$, the bound (15) establishes the desired result.

Problem 4 (Exercise 5.6.5. in [1]: Strong law for additive functionals).
(i) We first prove the following useful result inspired by Exercise 5.3.1 in [1]:

Lemma 1. Let $\left\{X_{n}\right\}_{n=0}^{\infty}$ be a homogeneous Markov chain with countable state space \mathbb{S} and transition probability $p(\cdot, \cdot): \mathbb{S} \times \mathbb{S} \rightarrow[0,1]$, and $x \in \mathbb{S}$ be a recurrent state of the chain. For $k \in \mathbb{N}$, let $\tau_{k}:=T_{x}^{k}-T_{x}^{k-1}$ be the k-th inter-arrival time to state x, and $V_{k}:=\left(\tau_{k}, X_{T_{x}^{k-1}}, X_{T_{x}^{k-1}+1}, \cdots, X_{T_{x}^{k-1}}\right)$. Then given any probability distribution $\mu(\cdot): \mathbb{S} \rightarrow[0,1]$, the sequence of random vectors $\left\{V_{k}: k \geq 2\right\}$ are independent and identically distributed under the canonical probability measure \mathbb{P}_{μ} defined on the sequence space $\left(\Omega_{0}, \mathcal{F}_{\infty}\right)$, conditionally on the event $\left\{T_{x}<+\infty\right\}$, where $T_{x}:=T_{x}^{1}$ is the first hitting time to state x.

Proof of Lemma 1.
To begin with, we may observe that if $T_{x}^{k-1}(\omega)<+\infty$, then $\mathbb{1}_{\left\{V_{1}=v\right\}} \circ \theta_{T_{x}^{k-1}}=\mathbb{1}_{\left\{V_{k}=v\right\}}$ for all $k \geq 2$ and $v \in \mathbb{V}:=\bigcup_{n=1}^{\infty}\left(\{n\} \times \mathbb{S}^{n}\right)$. That is,

$$
\begin{equation*}
\mathbb{1}_{\left\{V_{k}=v\right\}}=\left(\mathbb{1}_{\left\{V_{1}=v\right\}} \circ \theta_{T_{x}^{k-1}}\right) \mathbb{1}_{\left\{T_{x}^{k-1}<+\infty\right\}} \tag{16}
\end{equation*}
$$

on Ω_{0}, since $\left\{V_{k}=v\right\} \subseteq\left\{T_{x}^{k}<+\infty\right\} \subseteq\left\{T_{x}^{k-1}<+\infty\right\}$. Thus, for every $k \geq 2$, one has

$$
\begin{align*}
\mathbb{P}_{\mu}\left\{V_{k}=v \mid \mathcal{F}_{T_{x}^{k-1}}\right\} & =\mathbb{E}_{\mu}\left[\mathbb{1}_{\left\{V_{k}=v\right\}} \mid \mathcal{F}_{T_{x}^{k-1}}\right] \\
& \stackrel{(\mathrm{a})}{=} \mathbb{E}_{\mu}\left[\left(\mathbb{1}_{\left\{V_{1}=v\right\}} \circ \theta_{T_{x}^{k-1}}\right) \mathbb{1}_{\left\{T_{x}^{k-1}<+\infty\right\}} \mid \mathcal{F}_{T_{x}^{k-1}}\right] \\
& \stackrel{(\mathrm{b})}{=} \mathbb{E}_{\mu}\left[\mathbb{1}_{\left\{V_{1}=v\right\}} \circ \theta_{T_{x}^{k-1}} \mid \mathcal{F}_{T_{x}^{k-1}}\right] \mathbb{1}_{\left\{T_{x}^{k-1}<+\infty\right\}} \tag{17}\\
& \stackrel{(\mathrm{c})}{=} \mathbb{E}_{X_{x}^{k-1}}\left[\mathbb{1}_{\left\{V_{1}=v\right\}}\right] \mathbb{1}_{\left\{T_{x}^{k-1}<+\infty\right\}} \\
& \stackrel{(\mathrm{d})}{=} \mathbb{E}_{x}\left[\mathbb{1}_{\left\{V_{1}=v\right\}}\right] \mathbb{1}_{\left\{T_{x}^{k-1}<+\infty\right\}} \\
& =\mathbb{P}_{x}\left\{V_{1}=v\right\} \mathbb{1}_{\left\{T_{x}^{k-1}<+\infty\right\}}
\end{align*}
$$

\mathbb{P}_{μ}-almost surely, where the above steps (a)-(d) can be justified as follows:
(a) the equality (16);
(b) $\left\{T_{x}^{k-1}<+\infty\right\} \in \mathcal{F}_{T_{x}^{k-1}}$, since

$$
\left\{T_{x}^{k-1}<+\infty\right\} \cap\left\{T_{x}^{k-1}=n\right\}=\left\{T_{x}^{k-1}=n\right\} \in \mathcal{F}_{T_{x}^{k-1}}
$$

for every $n \in \mathbb{Z}_{+}$;
(c) the strong Markov property (Theorem 5.2.5 in [1]);
(d) if $T_{x}^{k-1}<+\infty$, then $X_{T_{x}^{k-1}}=x$ for $k \geq 2$.

One can immediately deduce from (17) that

$$
\begin{equation*}
\mathbb{P}_{\mu}\left\{V_{k}=v\right\}=\mathbb{E}_{\mu}\left[\mathbb{P}_{\mu}\left\{V_{k}=v \mid \mathcal{F}_{T_{x}^{k-1}}\right\}\right]=\mathbb{P}_{x}\left\{V_{1}=v\right\} \mathbb{P}_{\mu}\left\{T_{x}^{k-1}<+\infty\right\} \tag{18}
\end{equation*}
$$

At this point, we claim that for all $k \in \mathbb{N}, \mathbb{P}_{\mu}\left\{T_{x}^{k}<+\infty\right\}=\mathbb{P}_{\mu}\left\{T_{x}<+\infty\right\}$. If $k=1$, there's nothing to
prove and we may assume that $k \geq 2$. One can easily see that if $T_{x}^{k-1}(\omega)<+\infty$, then

$$
\begin{aligned}
\left(\mathbb{1}_{\left\{T_{x}<+\infty\right\}} \circ \theta_{T_{x}^{k-1}}\right)(\omega) & = \begin{cases}1 & \text { if } X_{n}\left(\theta_{T_{x}^{k-1}}(\omega)\right)=x \text { for some } n>0 ; \\
0 & \text { otherwise }\end{cases} \\
& = \begin{cases}1 & \text { if } X_{n}(\omega)=x \text { for some } n>T_{x}^{k-1}(\omega) ; \\
0 & \text { otherwise }\end{cases} \\
& =\mathbb{1}_{\left\{T_{x}^{k}<+\infty\right\}}(\omega) .
\end{aligned}
$$

More succinctly, we have

$$
\begin{equation*}
\mathbb{1}_{\left\{T_{x}^{k}<+\infty\right\}}=\left(\mathbb{1}_{\left\{T_{x}<+\infty\right\}} \circ \theta_{T_{x}^{k-1}}\right) \mathbb{1}_{\left\{T_{x}^{k-1}<+\infty\right\}} \tag{19}
\end{equation*}
$$

on Ω_{0}. Hence,

$$
\begin{align*}
\mathbb{P}_{\mu}\left\{T_{x}^{k}<+\infty\right\} & =\mathbb{E}_{\mu}\left[\mathbb{1}_{\left\{T_{x}^{k<+\infty}\right.}\right] \\
& \stackrel{(\mathrm{e})}{=} \mathbb{E}_{\mu}\left[\left(\mathbb{1}_{\left\{T_{x}<+\infty\right\}} \circ \theta_{T_{x}^{k-1}}\right) \mathbb{1}_{\left\{T_{x}^{k-1}<+\infty\right\}}\right] \\
& =\mathbb{E}_{\mu}\left[\mathbb{E}_{\mu}\left[\left(\mathbb{1}_{\left\{T_{x}<+\infty\right\}} \circ \theta_{T_{x}^{k-1}}\right) \mathbb{1}_{\left\{T_{x}^{k-1}<+\infty\right\}} \mid \mathcal{F}_{T_{x}^{k-1}}\right]\right] \\
& \stackrel{(\mathrm{f})}{=}\left[\mathbb{E}_{\mu}\left[\mathbb{1}_{\left\{T_{x}<+\infty\right\}} \circ \theta_{T_{x}^{k-1}} \mid \mathcal{F}_{T_{x}^{k-1}}\right] \mathbb{1}_{\left\{T_{x}^{k-1}<+\infty\right\}}\right] \\
& \stackrel{(\mathrm{g})}{=} \mathbb{E}_{\mu}\left[\mathbb{E}_{X_{T_{x}^{k-1}}}\left[\mathbb{1}_{\left\{T_{x}<+\infty\right\}}\right] \mathbb{1}_{\left\{T_{x}^{k-1}<+\infty\right\}}\right] \tag{20}\\
& \stackrel{(\mathrm{h})}{=} \mathbb{E}_{\mu}\left[\mathbb{E}_{x}\left[\mathbb{1}_{\left\{T_{x}<+\infty\right\}}\right] \mathbb{1}_{\left\{T_{x}^{k-1}<+\infty\right\}}\right] \\
& =\rho_{x x} \cdot \mathbb{P}_{\mu}\left\{T_{x}^{k-1}<+\infty\right\} \\
& \stackrel{(\mathrm{i})}{=} \mathbb{P}_{\mu}\left\{T_{x}^{k-1}<+\infty\right\},
\end{align*}
$$

where the above steps (e)-(i) hold since:
(e) the equality (19);
(f) the same reason as the step (b);
(g) the same reason as the step (c);
(h) the same reason as the step (d);
(i) $\rho_{x x}=1$, because the state $x \in \mathbb{S}$ is recurrent,
thereby one can deduce our desired claim from (20) inductively. So, the equation (18) becomes

$$
\mathbb{P}_{x}\left\{V_{1}=v\right\} \mathbb{P}_{\mu}\left\{T_{x}<+\infty\right\}=\mathbb{P}_{\mu}\left\{V_{k}=v\right\} \stackrel{(\mathrm{j})}{=} \mathbb{P}_{\mu}\left\{V_{k}=v, T_{x}<+\infty\right\},
$$

where the step (j) holds since $\left\{V_{k}=v\right\} \subseteq\left\{T_{x}<+\infty\right\}$, thereby we arrive at

$$
\begin{equation*}
\mathbb{P}_{x}\left\{V_{1}=v\right\}=\mathbb{P}_{\mu}\left\{V_{k}=v \mid T_{x}<+\infty\right\} \tag{21}
\end{equation*}
$$

for all $k \geq 2$. Thus, $\left\{V_{k}: k \geq 2\right\}$ are identically distributed under the canonical probability measure \mathbb{P}_{μ} on the sequence space $\left(\Omega_{0}, \mathcal{F}_{\infty}\right)$, conditionally on the event $\left\{T_{x}<+\infty\right\}$.

As the final step, it remains to establish the conditional independence of the sequence $\left\{V_{k}: k \geq 2\right\}$ given the event $\left\{T_{x}<+\infty\right\}$. Let $\left\{v_{k}: k \geq 2\right\}$ be any sequence in \mathbb{V}. Since $\mathbb{P}_{\mu}\left\{T_{x}<+\infty\right\}=\mathbb{P}_{\mu}\left\{T_{x}^{k}<+\infty\right\}$ for all $k \in \mathbb{N}$, we know that $\mathbb{1}_{\mathbb{P}_{\mu}\left\{T_{x}<+\infty\right\}} \stackrel{\mathbb{P}_{\mu} \text {-a.s. }}{=} \mathbb{1}_{\mathbb{P}_{\mu}}\left\{T_{x}^{k}<+\infty\right\}$ for all $k \in \mathbb{N}$. Let us begin our argument from the equation (17): for every $k \geq 2$,

$$
\begin{equation*}
\mathbb{P}_{\mu}\left\{V_{k}=v_{k} \mid \mathcal{F}_{T_{x}^{k-1}}\right\} \stackrel{\mathbb{P}_{\mu} \text {-a.s. }}{=} \mathbb{P}_{x}\left\{V_{1}=v_{k}\right\} \mathbb{1}_{\left\{T_{x}<+\infty\right\}} \tag{22}
\end{equation*}
$$

It is easy to see that $\left\{V_{2}=v_{2}, V_{3}=v_{3}, \cdots, V_{k-1}=v_{k-1}\right\} \in \mathcal{F}_{T_{x}^{k-1}}$, so

$$
\begin{align*}
& \mathbb{P}_{\mu}\left\{V_{2}=v_{2}, V_{3}=v_{3}, \cdots, V_{k}=v_{k}\right\} \\
&= \int_{\left\{V_{2}=v_{2}, V_{3}=v_{3}, \cdots, V_{k-1}=v_{k-1}\right\}} \mathbb{1}_{\left\{V_{k}=v_{k}\right\}} \mathrm{d} \mathbb{P}_{\mu} \\
& \stackrel{(\mathrm{k})}{=} \int_{\left\{V_{2}=v_{2}, V_{3}=v_{3}, \cdots, V_{k-1}=v_{k-1}\right\}} \mathbb{P}_{x}\left\{V_{1}=v_{k}\right\} \mathbb{1}_{\left\{T_{x}<+\infty\right\}} \mathrm{d} \mathbb{P}_{\mu} \tag{23}\\
&= \mathbb{P}_{x}\left\{V_{1}=v_{k}\right\} \mathbb{P}_{\mu}\left\{V_{2}=v_{2}, V_{3}=v_{3}, \cdots, V_{k-1}=v_{k-1}, T_{x}<+\infty\right\} \\
& \stackrel{(1)}{=} \mathbb{P}_{\mu}\left\{V_{k}=v_{k} \mid T_{x}<+\infty\right\} \mathbb{P}_{\mu}\left\{V_{2}=v_{2}, V_{3}=v_{3}, \cdots, V_{k-1}=v_{k-1} \mid T_{x}<+\infty\right\} \mathbb{P}_{\mu}\left\{T_{x}<+\infty\right\},
\end{align*}
$$

where the step (k) comes from (22), and the step (1) is due to the equation (21). Hence, we reach

$$
\begin{align*}
& \mathbb{P}_{\mu}\left\{V_{2}=v_{2}, V_{3}=v_{3}, \cdots, V_{k-1}=v_{k-1} \mid T_{x}<+\infty\right\} \mathbb{P}_{\mu}\left\{V_{k}=v_{k} \mid T_{x}<+\infty\right\} \\
= & \frac{\mathbb{P}_{\mu}\left\{V_{2}=v_{2}, V_{3}=v_{3}, \cdots, V_{k}=v_{k}\right\}}{\mathbb{P}_{\mu}\left\{T_{x}<+\infty\right\}} \tag{24}\\
\stackrel{(\mathrm{m})}{=} & \frac{\mathbb{P}_{\mu}\left\{V_{2}=v_{2}, V_{3}=v_{3}, \cdots, V_{k}=v_{k}, T_{x}<+\infty\right\}}{\mathbb{P}_{\mu}\left\{T_{x}<+\infty\right\}} \\
= & \mathbb{P}_{\mu}\left\{V_{2}=v_{2}, V_{3}=v_{3}, \cdots, V_{k}=v_{k} \mid T_{x}<+\infty\right\},
\end{align*}
$$

where the step (m) holds since $\left\{V_{2}=v_{2}, V_{3}=v_{3}, \cdots, V_{k}=v_{k}\right\} \subseteq\left\{T_{x}<+\infty\right\}$. Therefore, we may inductively conclude that

$$
\mathbb{P}_{\mu}\left\{V_{2}=v_{2}, V_{3}=v_{3}, \cdots, V_{n}=v_{n} \mid T_{x}<+\infty\right\}=\prod_{k=2}^{n} \mathbb{P}_{\mu}\left\{V_{k}=v_{k} \mid T_{x}<+\infty\right\}
$$

for all $n \geq 2$ and $v_{2}, v_{3}, \cdots, v_{n} \in \mathbb{V}$. Hence, $\left\{V_{k}: k \geq 2\right\}$ is a sequence of independent and identically distributed random vectors under \mathbb{P}_{μ} defined on $\left(\Omega_{0}, \mathcal{F}_{\infty}\right)$, conditionally on the event $\left\{T_{x}<+\infty\right\}$.

Now, it's time to complete the proof of the statement (i). Since $p(\cdot, \cdot)$ is irreducible and has a stationary distribution $\pi(\cdot): \mathbb{S} \rightarrow[0,1]$, it is positive recurrent by Theorem 5.5.12 in [1]. Thanks to Lemma 1 , for any state $x \in \mathbb{S}$, the sequence of random vectors,

$$
\left\{V_{k}:=\left(\tau_{k}, X_{T_{x}^{k-1}}, X_{T_{x}^{k-1}+1}, \cdots, X_{T_{x}^{k}-1}\right): k \geq 2\right\}
$$

are independent and identically distributed under \mathbb{P}_{μ}, conditionally on the event $\left\{T_{x}<+\infty\right\}$. Here, we may observe that for any event $E \in \mathcal{F}_{\infty}$,

$$
\begin{align*}
\mathbb{P}_{\mu}\{E\} & =\mathbb{P}_{\mu}\left\{E \mid T_{x}<+\infty\right\} \mathbb{P}_{\mu}\left\{T_{x}<+\infty\right\}+\mathbb{P}_{\mu}\left\{E \mid T_{x}=+\infty\right\} \mathbb{P}_{\mu}\left\{T_{x}=+\infty\right\} \\
& \stackrel{(n)}{=} \mathbb{P}_{\mu}\left\{E \mid T_{x}<+\infty\right\} \tag{25}
\end{align*}
$$

where the step (n) can be justified as follows: since $p(\cdot, \cdot)$ is irreducible and the state $x \in \mathbb{S}$ is recurrent, $\rho_{y x}=1$ for all $y \in \mathbb{S}$ due to Theorem 5.3.2 in [1]. So, Remark 1 implies

$$
\mathbb{P}_{\mu}\left\{T_{x}<+\infty\right\}=\sum_{y \in \mathbb{S}} \mu(y) \cdot \mathbb{P}_{y}\left\{T_{x}<+\infty\right\}=\sum_{y \in \mathbb{S}} \mu(y) \cdot \rho_{y x}=1,
$$

as desired. From the observation (25), one can see from Lemma 1 that $\left\{V_{k}\right\}_{k=2}^{\infty}$ is a sequence of independent and identically distributed random vectors under the canonical probability measure \mathbb{P}_{μ} defined on the sequence space $\left(\Omega_{0}, \mathcal{F}_{\infty}\right)$, not necessarily conditionally on the event $\left\{T_{x}<+\infty\right\}$. Furthermore, we obtain from (21) together with the observation (25) that

$$
\begin{equation*}
\mathbb{P}_{x}\left\{V_{1}=v\right\}=\mathbb{P}_{\mu}\left\{V_{k}=v\right\} \tag{26}
\end{equation*}
$$

for all $k \geq 2$ and $v \in \mathbb{V}$. Now, define the function $F: \mathbb{V} \rightarrow \mathbb{R}$ by

$$
F\left(n, x_{0}, x_{1}, \cdots, x_{n-1}\right):=\sum_{j=0}^{n-1} f\left(x_{j}\right), \forall\left(n, x_{0}, x_{1}, \cdots, x_{n-1}\right) \in \mathbb{V}
$$

Since $V_{k}^{f}=F\left(V_{k+1}\right)$ for $k \in \mathbb{N},\left\{V_{k}^{f}\right\}_{k=1}^{\infty}$ is a sequence of independent and identically distributed random variables under \mathbb{P}_{μ}, for any initial distribution $\mu(\cdot): \mathbb{S} \rightarrow[0,1]$ of the Markov chain.

It still remains to prove the \mathbb{P}_{π}-integrability of V_{k}^{f} for $k \geq 2$, i.e., $\mathbb{E}_{\pi}\left[\left|V_{k}^{f}\right|\right]<+\infty$ for all $k \geq 2$. To begin with, we introduce the following conventions:

$$
\pi(f):=\sum_{y \in \mathbb{S}} f(y) \pi(y) \quad \text { and } \quad \pi(|f|):=\sum_{y \in \mathbb{S}}|f(y)| \pi(y) .
$$

Then, the following bound holds:

$$
\begin{aligned}
& \mathbb{E}_{\pi}\left[\left|V_{k}^{f}\right|\right]=\mathbb{E}_{\pi}\left[\left|\sum_{j=T_{x}^{k}}^{T_{x}^{k+1}-1} f\left(X_{j}\right)\right|\right] \\
& \leq \mathbb{E}_{\pi}\left[\sum_{j=T_{x}^{k}}^{T_{x}^{k+1}-1}\left|f\left(X_{j}\right)\right|\right] \\
& \stackrel{(0)}{=} \sum_{1 \leq a<b<+\infty} \mathbb{E}_{\pi}\left[\sum_{j=T_{x}^{k}}^{T_{x}^{k+1}-1}\left|f\left(X_{j}\right)\right| \mid T_{x}^{k}=a, T_{x}^{k+1}=b\right] \mathbb{P}_{\pi}\left\{T_{x}^{k}=a, T_{x}^{k+1}=b\right\} \\
& =\sum_{1 \leq a<b<+\infty} \mathbb{E}_{\pi}\left[\sum_{j=a}^{b-1}\left|f\left(X_{j}\right)\right|\right] \mathbb{P}_{\pi}\left\{T_{x}^{k}=a, T_{x}^{k+1}=b\right\} \\
& =\sum_{1 \leq a<b<+\infty}[\sum_{j=a}^{b-1} \underbrace{\mathbb{E}_{\pi}\left[\left|f\left(X_{j}\right)\right|\right]}_{=\pi(|f|)}] \mathbb{P}_{\pi}\left\{T_{x}^{k}=a, T_{x}^{k+1}=b\right\} \\
& \stackrel{(\mathrm{p})}{=} \pi(|f|) \sum_{j=a}^{b-1}(b-a) \mathbb{P}_{\pi}\left\{T_{x}^{k}=a, T_{x}^{k+1}=b\right\} \\
& =\pi(|f|) \sum_{n=1}^{\infty} n \cdot \mathbb{P}_{\pi}\left\{\tau_{k+1}=n\right\} \\
& \stackrel{(\mathrm{q})}{=} \pi(|f|) \sum_{n=1}^{\infty} n \cdot \mathbb{P}_{x}\left\{T_{x}=n\right\} \\
& =\pi(|f|) \mathbb{E}_{x}\left[T_{x}\right] \stackrel{(\mathrm{r})}{<}+\infty,
\end{aligned}
$$

where the above steps (o)-(r) can be validated as follows:
(o) we have $\mathbb{P}_{\pi}\left\{T_{x}^{k}<+\infty\right\}=1$ for all $n \in \mathbb{N}$ due to Remark 1 ;
(p) $\pi(\cdot): \mathbb{S} \rightarrow[0,1]$ is a stationary distribution for $p(\cdot, \cdot)$;
(q) from (26), we get

$$
\mathbb{P}_{x}\left\{T_{x}=n\right\}=\mathbb{P}_{\mu}\left\{\tau_{k}=n\right\}
$$

for all $n \in \mathbb{N}, k \geq 2$, and any initial distribution $\mu(\cdot)$ of the Markov chain;
(r) the state $x \in \mathbb{S}$ is positive recurrent,
and this completes the proof of the statement (i).
(ii) Firstly, one can see that

$$
\begin{align*}
K_{n} & :=\inf \left\{k \in \mathbb{Z}_{+}: T_{x}^{k} \geq n\right\} \\
& =\inf \left\{k \in \mathbb{Z}_{+}: T_{x}^{k}>n-1\right\} \\
& =\inf \left\{k \in \mathbb{Z}_{+}: \sum_{j=1}^{n-1} \mathbb{1}_{\left\{X_{j}=x\right\}} \leq k-1\right\} \tag{27}\\
& =\sum_{j=1}^{n-1} \mathbb{1}_{\left\{X_{j}=x\right\}}+1 \\
& =N_{n-1}(x)+1 .
\end{align*}
$$

We defined the events

$$
\begin{aligned}
& \mathcal{E}_{1}:=\left\{\omega \in \Omega_{0}: \lim _{n \rightarrow \infty} \frac{K_{n}(\omega)}{n}=\frac{1}{\mathbb{E}_{x}\left[T_{x}\right]}\right\} \in \mathcal{F}_{\infty} ; \\
& \mathcal{E}_{2}:=\left\{\omega \in \Omega_{0}: \lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} V_{k}^{f}(\omega)=\mathbb{E}_{\pi}\left[V_{1}^{f}\right]\right\} \in \mathcal{F}_{\infty} .
\end{aligned}
$$

Due to Theorem 5.6.1 in [1], we know that for any state $y \in \mathbb{S}$,

$$
\frac{N_{n}(x)}{n} \xrightarrow{n \rightarrow \infty} \frac{1}{\mathbb{E}_{x}\left[T_{x}\right]} \mathbb{1}_{\left\{T_{x}<+\infty\right\}} \stackrel{(\mathrm{r})}{=} \frac{1}{\mathbb{E}_{x}\left[T_{x}\right]}
$$

\mathbb{P}_{y}-almost surely, where the step (r) follows from the fact $\mathbb{P}_{y}\left\{T_{x}<+\infty\right\}=\rho_{y x}=1$ for every $y \in \mathbb{S}$, which holds by Theorem 5.3.2 in [1]. Thus,

$$
\frac{K_{n}}{n} \stackrel{(\mathrm{~s})}{=} \frac{N_{n-1}}{n-1}\left(1-\frac{1}{n}\right)+\frac{1}{n} \xrightarrow{n \rightarrow \infty} \frac{1}{\mathbb{E}_{x}\left[T_{x}\right]}
$$

\mathbb{P}_{y}-almost surely, where the step (s) makes use of the observation (27). So, we get $\mathbb{P}_{y}\left\{\mathcal{E}_{1}\right\}=1$ for all $y \in \mathbb{S}$.
On the other hand, we know from the statement (i) that $\mathbb{E}_{\pi}\left[\left|V_{k}^{f}\right|\right]<+\infty$ for all $k \geq 2$. The strong law of large number yields $\mathbb{P}_{\pi}\left\{\mathcal{E}_{2}\right\}=1$. Since the transition probability $p(\cdot, \cdot)$ is irreducible, there is a positive integer $K(x, y) \in \mathbb{N}$ such that $p^{K(x, y)}(x, y)>0$ for every $(x, y) \in \mathbb{S} \times \mathbb{S}$. If there exists a state $z \in \mathbb{S}$ such that $\pi(z)=0$, then

$$
0=\pi(z)=\sum_{x \in \mathbb{S}} \pi(x) \cdot p^{K(y, z)}(x, z) \geq \pi(y) \cdot p^{K(y, z)}(y, z),
$$

which implies $\pi(y)=0$ for all $y \in \mathbb{S}$. This violates the fact that $\pi(\cdot)$ has total mass 1 , i.e., $\sum_{x \in \mathbb{S}} \pi(x)=1$, and therefore we find that $\pi(x)>0$ for all $x \in \mathbb{S}$. Remark 1 implies

$$
1=\mathbb{P}_{\pi}\left\{\mathcal{E}_{2}\right\}=\sum_{y \in \mathbb{S}} \pi(y) \mathbb{P}_{y}\left\{\mathcal{E}_{2}\right\}
$$

and this yields $\mathbb{P}_{y}\left\{\mathcal{E}_{2}\right\}=1$ for all $y \in \mathbb{S}$, since $\pi(y)>0$ for all $y \in \mathbb{S}$. Hence, we arrive at $\mathbb{P}_{y}\left\{\mathcal{E}_{1} \cap \mathcal{E}_{2}\right\}=1$ for all $y \in \mathbb{S}$, and employing Remark 1 again yields

$$
\mathbb{P}_{\mu}\left\{\mathcal{E}_{1} \cap \mathcal{E}_{2}\right\}=\sum_{y \in \mathbb{S}} \mu(y) \mathbb{P}_{y}\left\{\mathcal{E}_{1} \cap \mathcal{E}_{2}\right\}=\sum_{y \in \mathbb{S}} \mu(y)=1
$$

for any initial distribution $\mu(\cdot): \mathbb{S} \rightarrow[0,1]$ of the Markov chain.
Finally, for every $\omega \in \mathcal{E}_{1} \cap \mathcal{E}_{2}$, one can see that $\lim _{n \rightarrow \infty} K_{n}(\omega)=+\infty$ since $\mathbb{E}_{x}\left[T_{x}\right]<+\infty$. Thus,

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{K_{n}(\omega)} V_{k}^{f}(\omega) & =\lim _{n \rightarrow \infty} \frac{K_{n}(\omega)}{n} \cdot \frac{1}{K_{n}(\omega)} \sum_{k=1}^{K_{n}(\omega)} V_{k}^{f}(\omega) \\
& =\frac{\mathbb{E}_{\pi}\left[V_{1}^{f}\right]}{\mathbb{E}_{x}\left[T_{x}\right]} \\
& \stackrel{(\mathrm{t})}{=} \pi(f),
\end{aligned}
$$

where the step (t) can be verified as follows:

$$
\begin{aligned}
\mathbb{E}_{\pi}\left[V_{1}^{f}\right] & =\mathbb{E}_{\pi}\left[\sum_{j=T_{x}^{k}}^{T_{x}^{k+1}-1} f\left(X_{j}\right)\right] \\
& \stackrel{(\mathrm{u})}{=} \sum_{1 \leq a<b<+\infty} \mathbb{E}_{\pi}\left[\sum_{j=T_{x}^{k}}^{T_{x}^{k+1}-1} f\left(X_{j}\right) \mid T_{x}^{k}=a, T_{x}^{k+1}=b\right] \mathbb{P}_{\pi}\left\{T_{x}^{k}=a, T_{x}^{k+1}=b\right\} \\
& =\sum_{1 \leq a<b<+\infty} \mathbb{E}_{\pi}\left[\sum_{j=a}^{b-1} f\left(X_{j}\right)\right] \mathbb{P}_{\pi}\left\{T_{x}^{k}=a, T_{x}^{k+1}=b\right\} \\
& =\sum_{1 \leq a<b<+\infty}[\sum_{j=a}^{b-1} \underbrace{\mathbb{E}_{\pi}\left[f\left(X_{j}\right)\right]}_{=\pi(f)}] \mathbb{P}_{\pi}\left\{T_{x}^{k}=a, T_{x}^{k+1}=b\right\} \\
& \stackrel{(\mathrm{v})}{=} \pi(f) \sum_{j=a}^{b-1}(b-a) \mathbb{P}_{\pi}\left\{T_{x}^{k}=a, T_{x}^{k+1}=b\right\} \\
& =\pi(f) \sum_{n=1}^{\infty} n \cdot \mathbb{P}_{\pi}\left\{\tau_{k+1}=n\right\} \\
& \stackrel{(\mathrm{w})}{=} \pi(f) \sum_{n=1}^{\infty} n \cdot \mathbb{P}_{x}\left\{T_{x}=n\right\} \\
& =\pi(f) \mathbb{E}_{x}\left[T_{x}\right],
\end{aligned}
$$

where the steps (u), (v), and (w) hold by the same reason as the steps (o), (p), and (q), respectively. So,

$$
\frac{1}{n} \sum_{m=1}^{K_{n}} V_{m}^{f} \xrightarrow{n \rightarrow \infty} \frac{\mathbb{E}_{\pi}\left[V_{1}^{f}\right]}{\mathbb{E}_{x}\left[T_{x}\right]}=\pi(f)
$$

\mathbb{P}_{μ}-almost surely, for any initial distribution $\mu(\cdot)$ of the Markov chain.
(iii) To begin with, we provide the following critical lemma:

Lemma 2. Let $\left\{X_{n}\right\}_{n=1}^{\infty}$ be a sequence of independent and identically distributed random variables defined on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ with $\mathbb{E}\left[\left|X_{1}\right|\right]<+\infty$. Then,

$$
\begin{equation*}
\frac{1}{n} \max \left\{\left|X_{k}\right|: k \in[n]\right\} \xrightarrow{\mathbb{P} \text {-a.s. }} 0 \tag{28}
\end{equation*}
$$

as $n \rightarrow \infty$.

Proof of Lemma 2.
Firstly, we fix any $\epsilon>0$. Then,

$$
\begin{align*}
\sum_{n=1}^{\infty} \mathbb{P}\left\{\left|X_{n}\right| \geq n \epsilon\right\} & \stackrel{(\mathrm{x})}{=} \sum_{n=1}^{\infty} \mathbb{P}\left\{\left|X_{1}\right| \geq n \epsilon\right\} \\
& =\sum_{n=1}^{\infty} \int_{n-1}^{n} \mathbb{P}\left\{\frac{\left|X_{1}\right|}{\epsilon} \geq n\right\} \mathrm{d} t \\
& \stackrel{(\mathrm{y})}{\leq} \sum_{n=1}^{\infty} \int_{n-1}^{n} \mathbb{P}\left\{\frac{\left|X_{1}\right|}{\epsilon} \geq t\right\} \mathrm{d} t \tag{29}\\
& =\int_{0}^{\infty} \mathbb{P}\left\{\frac{\left|X_{1}\right|}{\epsilon} \geq t\right\} \mathrm{d} t \\
& \stackrel{(z)}{=} \frac{\mathbb{E}\left[\left|X_{1}\right|\right]}{\epsilon}<+\infty
\end{align*}
$$

where the above steps $(\mathrm{x})-(\mathrm{z})$ can be verified as follows:
(x) the sequence $\left\{X_{n}\right\}_{n=1}^{\infty}$ are identically distributed;
(y) for $n-1 \leq t \leq n$, we have $\mathbb{P}\left\{\frac{\left|X_{1}\right|}{\epsilon} \geq n\right\} \leq \mathbb{P}\left\{\frac{\left|X_{1}\right|}{\epsilon} \geq t\right\}$;
(z) Lemma 2.2.13 in [1].

From the observation (29), we employ the first Borel-Cantelli lemma:

$$
\mathbb{P}\left\{\limsup _{n \rightarrow \infty}\left\{\left|X_{n}\right| \geq n \epsilon\right\}\right\}=0
$$

So, we conclude that for any $\epsilon>0$,

$$
\begin{equation*}
\mathbb{P}\left\{\liminf _{n \rightarrow \infty}\left\{\left|X_{n}\right|<n \epsilon\right\}\right\}=1 \tag{30}
\end{equation*}
$$

Now, let $A_{k}:=\liminf _{n \rightarrow \infty}\left\{\frac{\left|X_{n}\right|}{n}<\frac{1}{k}\right\}$ for $k \in \mathbb{N}$, and $A:=\bigcap_{k=1}^{\infty} A_{k}$. From (30), we know $\mathbb{P}\{A\}=1$ and if $\omega \in A$, then $\frac{\left|X_{n}(\omega)\right|}{n}<\frac{1}{k}$ for all but finitely many $n \in \mathbb{N}$. Thus,

$$
\limsup _{n \rightarrow \infty} \frac{\left|X_{n}(\omega)\right|}{n} \leq \frac{1}{k}
$$

for all $k \in \mathbb{N}$, and letting $k \rightarrow \infty$ yields the desired result.

By replacing f by $|f|$ in the statement (i), one can see that $\left\{V_{k}^{|f|}: k \in \mathbb{N}\right\}$ is a sequence of independent and identically distributed random variables under the canonical probability measure \mathbb{P}_{μ} on the sequence space $\left(\Omega_{0}, \mathcal{F}_{\infty}\right)$, for any initial distribution $\mu(\cdot)$ of the Markov chain, and $\mathbb{E}_{\pi}\left[V_{k}^{|f|}\right]<+\infty$ for all $k \in \mathbb{N}$. Applying Lemma 2 gives

$$
\begin{equation*}
\frac{1}{n} \max \left\{V_{k}^{|f|}: k \in[n]\right\} \xrightarrow{n \rightarrow \infty} 0 \tag{31}
\end{equation*}
$$

\mathbb{P}_{π}-almost surely. Let

$$
\begin{aligned}
& \mathcal{E}_{3}:=\left\{\omega \in \Omega_{0}: \lim _{n \rightarrow \infty} \frac{1}{n} \max \left\{V_{k}^{|f|}(\omega): k \in[n]\right\}=0\right\} \in \mathcal{F}_{\infty} \\
& \mathcal{E}_{4}:=\left\{\omega \in \Omega_{0}: T_{x}^{k}(\omega)<+\infty \text { for all } k \in \mathbb{N}\right\} \in \mathcal{F}_{\infty}
\end{aligned}
$$

Then, (31) implies $\mathbb{P}_{\pi}\left\{\mathcal{E}_{3}\right\}=1=\sum_{y \in \mathbb{S}} \pi(y) \cdot \mathbb{P}_{y}\left\{\mathcal{E}_{3}\right\}$. Since $\pi(y)>0$ for all $y \in \mathbb{S}$, we have $\mathbb{P}_{y}\left\{\mathcal{E}_{3}\right\}=1$ for all $y \in \mathbb{S}$. Hence, Remark 1 yields

$$
\mathbb{P}_{\mu}\left\{\mathcal{E}_{3}\right\}=\sum_{y \in \mathbb{S}} \mu(y) \cdot \mathbb{P}_{y}\left\{\mathcal{E}_{3}\right\}=\sum_{y \in \mathbb{S}} \mu(y)=1,
$$

and this establishes $\frac{1}{n} \max \left\{V_{k}^{|f|}: k \in[n]\right\} \xrightarrow{n \rightarrow \infty} 0, \mathbb{P}_{\mu}$-almost surely, for any initial distribution $\mu(\cdot)$ of the Markov chain.

Furthermore, the irreducibility of $p(\cdot, \cdot)$ together with the recurrence of the state $x \in \mathbb{S}$ yields $\mathbb{P}_{y}\left\{\mathcal{E}_{4}\right\}=1$ for all $y \in \mathbb{S}$. Therefore, we arrive at $\mathbb{P}_{y}\left\{\mathcal{E}_{3} \cap \mathcal{E}_{4}\right\}=1$ for all $y \in \mathbb{S}$, thereby from Remark 1 ,

$$
\mathbb{P}_{\mu}\left\{\mathcal{E}_{3} \cap \mathcal{E}_{4}\right\}=\sum_{y \in \mathbb{S}} \mu(y) \cdot \mathbb{P}_{y}\left\{\mathcal{E}_{3} \cap \mathcal{E}_{4}\right\}=\sum_{y \in \mathbb{S}} \mu(y)=1
$$

for any initial distribution $\mu(\cdot)$ of the Markov chain. Since we know that $\mathbb{P}_{\mu}\left\{\mathcal{E}_{1} \cap \mathcal{E}_{2}\right\}$, we finally obtain

$$
\begin{equation*}
\mathbb{P}_{\mu}\left\{\mathcal{E}_{1} \cap \mathcal{E}_{2} \cap \mathcal{E}_{3} \cap \mathcal{E}_{4}\right\}=1 \tag{32}
\end{equation*}
$$

for any initial distribution $\mu(\cdot): \mathbb{S} \rightarrow[0,1]$ of the Markov chain. At this point, we propose the following decomposition:

$$
\begin{aligned}
\sum_{j=1}^{n} f\left(X_{j}\right) & =\sum_{j=1}^{T_{x}-1} f\left(X_{j}\right)+\sum_{m=1}^{K_{n}-2}\left[\sum_{j=T_{x}^{m}}^{T_{x}^{m+1}-1} f\left(X_{j}\right)\right]+\sum_{j=T_{x}^{K_{n}-1}}^{n} f\left(X_{j}\right) \\
& =\sum_{j=1}^{T_{x}-1} f\left(X_{j}\right)+\sum_{m=1}^{K_{n}-2} V_{m}^{f}+\sum_{j=T_{x}^{K_{n}-1}}^{n} f\left(X_{j}\right),
\end{aligned}
$$

which leads to

$$
\begin{equation*}
\frac{1}{K_{n}} \sum_{j=1}^{n} f\left(X_{j}\right)=\underbrace{\frac{1}{K_{n}} \sum_{j=1}^{T_{x}-1} f\left(X_{j}\right)}_{(\mathrm{T} 1)}+\underbrace{\left(1-\frac{2}{K_{n}}\right) \frac{1}{K_{n}-2} \sum_{m=1}^{K_{n}-2} V_{m}^{f}}_{(\mathrm{T} 2)}+\underbrace{\frac{1}{K_{n}} \sum_{j=T_{x}^{K_{n}-1}}^{n} f\left(X_{j}\right)}_{\text {(T3) }} . \tag{33}
\end{equation*}
$$

We remark that if $w \in \mathcal{E}_{1} \cap \mathcal{E}_{2} \cap \mathcal{E}_{3} \cap \mathcal{E}_{4}, \lim _{n \rightarrow \infty} K_{n}(\omega)=+\infty$. Therefore, it's clear that $\lim _{n \rightarrow \infty}(\mathrm{~T} 1)(\omega)=0$, because $\omega \in \mathcal{E}_{4}$ implies $T_{x}(\omega)<+\infty$, and

$$
\begin{equation*}
\lim _{n \rightarrow \infty}(\mathrm{~T} 2)(\omega)=\lim _{n \rightarrow \infty}\left(1-\frac{2}{K_{n}(\omega)}\right) \frac{1}{K_{n}(\omega)-2} \sum_{m=1}^{K_{n}(\omega)-2} V_{m}^{f}(\omega)=\mathbb{E}_{\pi}\left[V_{1}^{f}\right] \tag{34}
\end{equation*}
$$

since $\omega \in \mathcal{E}_{2}$. On the other hand,

$$
\begin{align*}
|(\mathrm{T} 3)(\omega)| & \leq \frac{1}{K_{n}(\omega)} \sum_{j=T_{x}^{K_{n}(\omega)-1}(\omega)}^{n}\left|f\left(X_{j}(\omega)\right)\right| \\
& \stackrel{\left(\mathrm{a}^{\prime}\right)}{\leq} \frac{1}{K_{n}(\omega)} \sum_{j=T_{x}^{K_{n}(\omega)-1}(\omega)}^{T_{x}^{K_{n}(\omega)}(\omega)}\left|f\left(X_{j}(\omega)\right)\right| \tag{35}\\
& =\frac{1}{K_{n}(\omega)} V_{K_{n}(\omega)-1}^{|f|}(\omega) \\
& \leq \frac{1}{K_{n}(\omega)} \max \left\{V_{m}^{|f|}: m \in\left[K_{n}(\omega)\right]\right\} \\
& \xrightarrow{\left(\mathrm{b}^{\prime}\right)} 0
\end{align*}
$$

where the step (a^{\prime}) holds since $n \leq T_{x}^{K_{n}(\omega)}(\omega)$, and the step (b') is owing to the fact $\omega \in \mathcal{E}_{3}$ together with $\lim _{n \rightarrow \infty} K_{n}(\omega)=+\infty$. Combining the above pieces (34) and (35) together with the fact $\lim _{n \rightarrow \infty}(\mathrm{~T} 1)(\omega)=0$ deduces

$$
\lim _{n \rightarrow \infty} \frac{1}{K_{n}(\omega)} \sum_{j=1}^{n} f\left(X_{j}(\omega)\right)=0+\mathbb{E}_{\pi}\left[V_{1}^{f}\right]+0=\mathbb{E}_{\pi}\left[V_{1}^{f}\right]
$$

for all $w \in \mathcal{E}_{1} \cap \mathcal{E}_{2} \cap \mathcal{E}_{3} \cap \mathcal{E}_{4}$. Hence, for any $w \in \mathcal{E}_{1} \cap \mathcal{E}_{2} \cap \mathcal{E}_{3} \cap \mathcal{E}_{4}$,

$$
\begin{align*}
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{j=1}^{n} f\left(X_{j}(\omega)\right) & =\lim _{n \rightarrow \infty} \frac{K_{n}(\omega)}{n} \cdot \frac{1}{K_{n}(\omega)} \sum_{j=1}^{n} f\left(X_{j}(\omega)\right) \\
& \stackrel{\left(\mathfrak{c}^{\prime}\right)}{=} \frac{\mathbb{E}_{\pi}\left[V_{1}^{f}\right]}{\mathbb{E}_{x}\left[T_{x}\right]} \tag{36}\\
& =\pi(f),
\end{align*}
$$

where the step (c^{\prime}) follows from the fact $\omega \in \mathcal{E}_{1}$. So, (32) finishes the proof of the statement (iii).

References

[1] Rick Durrett. Probability: theory and examples, volume 49. Cambridge university press, 2019.

