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Throughout this homework, let Z+ denote the set of all non-negative integers, R+ be the set of all non-

negative real numbers, and [a : b] := {a, a+ 1, · · · , b− 1, b} for a, b ∈ Z with a ≤ b. We also write [n] := [1 : n]

for n ∈ N. Moreover,
⊎

denotes the disjoint union, and given a set A and k ∈ Z+,
(
A
k

)
:= {B ⊆ A : |B| = k}.

Also, we use the symbol S instead of S to denote the underlying state space of stochastic processes.

We assume throughout this homework that the underlying state space S is countable and it is equipped

with the discrete σ-field 2S on S. Since
(
S, 2S

)
is a nice measurable space, it admits the canonical construction

in Section 5.2 in [1] of the probability measure Pµ on the sequence space (Ω0,F∞) so that the sequence of

coordinate maps {Xn(ω) := ωn}∞n=0 is a homogeneous Markov chain with initial distribution µ and transition

probability p(·, ·) : S×2S → [0, 1]. We remark that it is conventional to write p(x, y) := p(x, {y}) for x, y ∈ S.

Problem 1 (Exercise 5.5.2. in [1]).

Recall that for any given recurrent state x ∈ S and any state y ∈ S \ {x},

µx(y) := Ex

[
Tx−1∑
n=0

1{Xn=y}

]
(a)
= Ex

[(
Tx−1∑
n=0

1{Xn=y}

)
1{Tx<+∞}

]
(b)
= Ex

[( ∞∑
k=0

1{∑Tx−1
n=0 1{Xn=y}=k}

)
1{Tx<+∞}

]
(c)
=

∞∑
k=1

k · Px

{
Tx−1∑
n=0

1{Xn=y} = k and Tx < +∞

}
(d)
=
∞∑
k=1

k · Px

{
Tx−1∑
n=0

1{Xn=y} = k

}
,

(1)

where the above steps (a)–(c) holds since

(a) since the state x is recurrent, Px {Tx < +∞} = 1;

(b) if Tx < +∞, then
∑Tx−1

n=0 1{Xn=y} < +∞;
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(c) the Fubini-Tonelli’s theorem, since the summands are non-negative;

(d) the same reason as the step (a).

Here, Tx := inf {n ≥ 1 : Xn = x} denotes the first hitting time to state x ∈ S.

Claim 1. For every k ∈ N, we have

Px

{
Tx−1∑
n=0

1{Xn=y} = k

}
= wxy (1− wyx)k−1wyx. (2)

Proof of Claim 1.

Let Yk := 1{∑Tx−1
n=0 1{Xn=y}=k} for k ∈ N. It’s clear that each Yk is a bounded measurable function defined

on the sequence space (Ω0,F∞). If Ty(ω) < Tx(ω), then(
Yk ◦ θTy

)
(ω) = 1{∑Tx−1

n=0 1{Xn=y}=k}
(
θTy(ω)

)
=

1 if
∑Tx(θTy (ω))−1

n=0 1{Xn(θTy (ω))=1} = k;

0 otherwise

(e)
=

1 if
∑Tx(ω)−Ty(ω)−1

n=0 1{ωn+Ty(ω)=y} = k;

0 otherwise

(f)
=

1 if
∑Tx(ω)−1

n=1 1{ωn=y} = k;

0 otherwise

= 1{∑Tx(ω)−1
n=1 1{Xn=y}=k

}

(3)

where the step (e) holds since when Ty(ω) < Tx(ω),

Tx
(
θTy(ω)

)
= inf

{
n ≥ 1 : Xn

(
θTy(ω)

)
= x

}
= inf

{
n ≥ 1 : ωn+Ty(ω) = x

}
= inf {n ≥ Ty(ω) + 1 : ωn = x} − Ty(ω)

(g)
= inf {n ≥ 1 : Xn = x} − Ty(ω)

= Tx(ω)− Ty(ω),

where the step (g) follows from the fact that Ty(ω) < Tx(ω) implies that there is no visits to state x from

time 1 to Ty(ω), and the step (f) is due to the fact that there is no visits to state y from time 1 to Ty(ω)−1.
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Thus,

Px


Tx(ω)−1∑
n=0

1{Xn=y} = k

 (h)
= Px


Tx(ω)−1∑
n=1

1{Xn=y} = k


= Ex

[
1{∑Tx(ω)−1

n=1 1{Xn=y}=k
}]

(i)
= Ex

[
1{∑Tx(ω)−1

n=1 1{Xn=y}=k
} · 1{Ty<Tx}

]
(j)
= Ex

[(
Yk ◦ θTy

)
· 1{Ty<Tx}

]
= Ex

[
Ex
[(
Yk ◦ θTy

)
· 1{Ty<Tx}

∣∣FTy]]
(k)
= Ex

[
Ex
[
Yk ◦ θTy

∣∣FTy]1{Ty<Tx}]
(l)
= Ex

[
EXTy [Yk]1{Ty<Tx}

]
(m)
= Ex

[
Ey [Yk]1{Ty<Tx}

]
= Ey [Yk]Px {Ty < Tx}

= Py


Tx(ω)−1∑
n=0

1{Xn=y} = k

 · wxy,

(4)

where the above steps (h)–(m) can be justified as follows:

(h) x 6= y;

(i)
{∑Tx(ω)−1

n=1 1{Xn=y} = k
}
⊆ {Ty < Tx};

(j) the equality (3);

(k) {Ty < Tx} ∈ FTy , where {Fn := σ (X0, X1, · · · , Xn)}∞n=0 is the canonical filtration of the Markov chain

{Xn}∞n=0, since

{Ty < Tx} ∩ {Ty = n} = {Tx > n} ∩ {Ty = n} = (Ω0 \ {Tx ≤ n}) ∩ {Ty = n} ∈ Fn

for every n ∈ Z+;

(l) the strong Markov property (Theorem 5.2.5 in [1]);

(m) if Ty < Tx ≤ +∞, then XTy = y.

Now, we turn our attention to the probability Ey [Yk] = Py
{∑Tx(ω)−1

n=0 1{Xn=y} = k
}

. If k = 1, we find that

Ey [Y1] = Py


Tx(ω)−1∑
n=0

1{Xn=y} = 1


= Py {Xn ∈ S \ {y} for 1 ≤ n ≤ Tx − 1}

= Py {Tx < Ty} = wyx.

(5)
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Hereafter, we assume that k ≥ 2. Then, we obtain

Ey [Yk] = Py


Tx(ω)−1∑
n=1

1{Xn=y} = k − 1


= Ey

[
1{∑Tx(ω)−1

n=1 1{Xn=y}=k−1
}]

(n)
= Ey

[
1{∑Tx(ω)−1

n=1 1{Xn=y}=k−1
} · 1{Ty<Tx}

]
(o)
= Ey

[(
Yk−1 ◦ θTy

)
· 1{Ty<Tx}

]
= Ey

[
Ey
[(
Yk−1 ◦ θTy

)
· 1{Ty<Tx}

∣∣FTy]]
(p)
= Ey

[
Ey
[
Yk−1 ◦ θTy

∣∣FTy]1{Ty<Tx}]
(q)
= Ey

[
EXTy [Yk−1]1{Ty<Tx}

]
(r)
= Ey

[
Ey [Yk−1]1{Ty<Tx}

]
= Ey [Yk−1] Py {Ty < Tx}︸ ︷︷ ︸

= 1−Py{Tx<Ty}

= (1− wyx)Ey [Yk−1] ,

(6)

where the above steps (n)–(r) can be validated as follows:

(n) for k ≥ 2,
{∑Tx(ω)−1

n=1 1{Xn=y} = k − 1
}
⊆ {Ty < Tx};

(o) the equation (3);

(p) the same reason as the step (k);

(q) the strong Markov property (Theorem 5.2.5 in [1]);

(r) if Ty < Tx ≤ +∞, then XTy = y.

So, we may inductively deduce that for every k ≥ 2,

Ey [Yk] = (1− wyx)k−1 Ey [Y1]
(s)
= (1− wyx)k−1wyx, (7)

where the step (s) makes use of the equation (5). Putting (7) into the equation (4) yields

Px


Tx(ω)−1∑
n=0

1{Xn=y} = k

 = wxyEy [Yk] = wxy (1− wyx)k−1wyx

for all k ∈ N.
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Hence, for any state y ∈ S \ {x},

µx(y) =

∞∑
k=1

k · Px

{
Tx−1∑
n=0

1{Xn=y} = k

}
(u)
=

∞∑
k=1

kwxy (1− wyx)k−1wyx

= wxywyx ·
1

{1− (1− wyx)}2

=
wxy
wyx

,

where the step (r) is due to Claim 1. For the case y = x, it’s clear that µx(x) = wxx
wxx

= 1 and this completes

the proof.

Problem 2 (Exercise 5.5.3. in [1]).

Fix any states x, y ∈ S, and let νxy : S→ [0,+∞) be defined by

νxy(z) := µx(y)µy(z), ∀z ∈ S.

Note that νxy(z) < +∞ for all z ∈ S due to the technical note in the page 303 of [1]. Then for any w ∈ S,

we have ∑
z∈S

νxy(z)p(z, w) = µx(y)
∑
z∈S

µy(z)p(z, w)

(a)
= µx(y)µy(w)

= νxy(w),

(8)

where the step (a) holds since the state y ∈ S is recurrent, µy(·) : S → [0,+∞) is a stationary measure for

the transition probability p(·, ·) : S × S → [0, 1] by Theorem 5.5.7 in [1]. Therefore, νxy(·) : S → [0,+∞)

is a stationary measure for p(·, ·). On the other hand, µx(·) : S→ [0,+∞) defines a stationary measure for

p(·, ·) by Theorem 5.5.7 in [1]. So, Theorem 5.5.9 in [1] implies

νxy(·) = cxy · µx(·) (9)

for some constant cxy ≥ 0. In particular, we obtain

µx(y) = µx(y)µy(y) = νxy(y) = cxy · µx(y). (10)

Lemma 1. If p(·, ·) : S × S → [0, 1] is irreducible and µ(·) : S → [0,+∞] is a stationary measure for the

transition probability p(·, ·) such that µ(a) > 0 for some a ∈ S, then µ(x) > 0 for all x ∈ S.

Proof of Lemma 1.

Assume on the contrary that µ(x) = 0 for some x ∈ S \ {a}. Due to the irreducibilty of p(·, ·), there is

an N(a, x) ∈ N such that

pN(a,x)(a, x) = Pa
{
XN(a,x) = x

}
> 0.

Since µ(·) is a stationary measure for p(·, ·), we obtain

0 = µ(x) =
∑
y∈S

µ(y)pN(a,x)(y, x) ≥ µ(a)pN(a,x)(a, x), (11)
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and the last term of the inequality (11), thereby it yields a contradiction! Therefore, µ(x) > 0 for all x ∈ S.

Since µx(x) = 1 > 0, Lemma 1 implies that µx(z) > 0 for all z ∈ S. So, we can divide the equation (10)

by µx(y) and thus we arrive at cxy = 1. Hence,

µx(z) = νxy(z) = µx(y)µy(z)

for all z ∈ S.

Problem 3 (Exercise 5.5.4. in [1]).

Fix any state y ∈ S. If x = y, then it’s clear from the definition of positive recurrence that Ey [Ty] < +∞.

So, we may assume that x ∈ S \ {y}.

Claim 2. Ex [Ty] · Py {Tx < Ty} ≤ Ey [Ty].

Proof of Claim 2.

To begin with, we note that Ty ∈ L1 (Ω0,F∞,Py) due to the positive recurrence of state y. One can see

that if Tx(ω) < Ty(ω), then

(Ty ◦ θTx) (ω) = inf {n ≥ 1 : Xn (θTx(ω)) = y}

= inf {n ≥ Tx(ω) + 1 : Xn(ω) = y} − Tx(ω)

(a)
= inf {n ≥ 1 : Xn(ω) = y} − Tx(ω)

= Ty(ω)− Tx(ω),

where the step (a) holds since if Tx(ω) < Ty(ω), then ωn = Xn(ω) ∈ S \ {y} for all 1 ≤ n ≤ Tx(ω). In other

words,

(Ty − Tx) · 1{Tx<Ty} = (Ty ◦ θTx) · 1{Tx<Ty} (12)

on Ω0. Hence, the following holds:

Ey [Ty] ≥ Ey
[
(Ty − Tx) · 1{Tx<Ty}

]
(b)
= Ey

[
(Ty ◦ θTx) · 1{Tx<Ty}

]
= Ey

[
Ey
[
(Ty ◦ θTx) · 1{Tx<Ty}

∣∣FTx]]
(c)
= Ey

[
Ey [Ty ◦ θTx | FTx ]1{Tx<Ty}

]
(d)
= Ey

[
EXTx [Ty]1{Tx<Ty}

]
(e)
= Ey

[
Ex [Ty]1{Tx<Ty}

]
= Ex [Ty] · Py {Tx < Ty} ,

where the above steps (b)–(e) can be justified as follows:

(b) the equality (12);
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(c) {Tx < Ty} ∈ FTx , since

{Tx < Ty} ∩ {Tx = n} = {Ty > n} ∩ {Tx = n} = (Ω0 \ {Ty ≤ n}) ∩ {Tx = n} ∈ Fn

for every n ∈ Z+, where {Fn := σ (X0, X1, · · · , Xn)}∞n=0 denotes the canonical filtration of the Markov

chain {Xn}∞n=0;

(d) the strong Markov property (Theorem 5.2.5 in [1]);

(e) if Tx < Ty ≤ +∞, then XTx = x,

and this finishes the proof of Claim 2.

Claim 3. Py {Tx < Ty} > 0.

Proof of Claim 3.

Due to the irreducibility of p(·, ·),

K(y, x) := inf {n ∈ N : pn(y, x) = Py {Xn = x} > 0} < +∞.

Since {Tx = K(y, x)} ⊆
{
XK(y,x) = x

}
, it’s clear that Py {Tx = K(y, x)} ≤ Py

{
XK(y,x) = x

}
. On the other

hand,

Py
{
XK(y,x) = x

}
= Py

{
XK(y,x) = x, Tx ≤ K(y, x)

}
=

K(y,x)−1∑
l=1

Py
{
XK(y,x) = x, Tx = l

}
+ Py

{
XK(y,x) = x, Tx = K(y, x)

}
(f)

≤
K(y,x)−1∑

l=1

Py
{
Xl = x,XK(y,x) = x

}
+ Py {Tx = K(y, x)}

(g)
=

K(y,x)−1∑
l=1

pl(y, x)︸ ︷︷ ︸
= 0

pK(y,x)−l(x, x) + Py {Tx = K(y, x)}

(h)
= Py {Tx = K(y, x)} ,

where the above steps (f)–(h) can be validated as follows:

(f) {Tx = l} ⊆ {Xl = x} for 1 ≤ l ≤ K(y, x);

(g) a consequence of Chapman-Kolmogorov’s equation (Theorem 5.2.4 in [1]);

(h) due to the minimality of K(y, x) in the set {n ∈ N : pn(y, x) = Py {Xn = x} > 0}.

Thus, we obtain Py {Tx = K(y, x)} = Py
{
XK(y,x) = x

}
. Also one has for every 1 ≤ l ≤ K(y, x)− 1,

Py {Tx = K(y, x), Ty < Tx} =

K(y,x)−1∑
l=1

Py {Tx = K(y, x), Ty = l}

≤
K(y,x)−1∑

l=1

Py
{
Xl = y,XK(y,x) = x

}
(i)
=

K(y,x)−1∑
l=1

pl(y, y) pK(y,x)−l(y, x)︸ ︷︷ ︸
= 0

(j)
= 0,

(13)
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where the step (i) is a consequence of Chapman-Kolmogorov’s equation (Theorem 5.2.4 in [1]), and the step

(j) follows from the minimality of K(y, x) in the set {n ∈ N : pn(y, x) = Py {Xn = x} > 0}. Hence,

Py {Tx < Ty} ≥ Py {Tx < Ty, Tx = K(y, x)}

= Py {Tx = K(y, x)} − Py {Ty < Tx, Tx = K(y, x)}︸ ︷︷ ︸
= 0

(k)
= pK(y,x)(y, x) > 0,

where the step (k) makes use of the fact Py {Tx = K(y, x)} = Py
{
XK(y,x) = x

}
together with (13), and this

establishes our desired claim.

Combining Claim 2 together with Claim 3 gives

Ex [Ty] ≤
Ey [Ty]

Py {Tx < Ty}
(l)
< +∞,

where the step (l) is owing to the positive recurrence of the state y ∈ S, and this completes the solution to

the problem.

Problem 4 (Exercise 5.5.5. in [1]).

Assume that p(·, ·) : S × S → [0, 1] is irreducible and has a stationary measure µ(·) : S → [0,+∞] such

that µ 6≡ +∞ on S and
∑

x∈S µ(x) = +∞.

Claim 4. µ(x) < +∞ for all x ∈ S.

Proof of Claim 4.

Assume on the contrary that µ(y) = +∞ for some y ∈ S. Due to the irreducibility of p(·, ·), for every

x ∈ S \ {y}, there is a K(y, x) ∈ N such that

pK(y,x)(y, x) = Py
{
XK(y,x) = x

}
> 0.

Since µ(·) : S→ [0,+∞] is a stationary measure for p(·, ·), we have

µ(x) =
∑
z∈S

µ(z)pK(y,x)(z, x) ≥ µ(y)pK(y,x)(y, x) = +∞,

which implies µ ≡ +∞ on S. This contradicts the assumption that µ 6≡ +∞ on S, and finishes the proof.

Now, let’s prove that p(·, ·) is not positive recurrent. Suppose not. Then in particular, p(·, ·) is recurrent

and so Theorem 5.5.9 in [1] implies that for each a ∈ S,

µ(·) = caµa(·) (14)
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on S, for some constant ca ∈ (0,+∞). Thus, one can see that

+∞ =
∑
x∈S

µ(x) = ca
∑
x∈S

µa(x)

= ca
∑
x∈S

Ea

[
Ta−1∑
n=0

1{Xn=x}

]

= ca
∑
x∈S

Ea

[
Ta∑
n=1

1{Xn=x}

]

= ca
∑
x∈S

Ea

[ ∞∑
n=1

1{Xn=x} · 1{n≤Ta}

]
(a)
= ca

∑
x∈S

[ ∞∑
n=1

Pa {Xn = x, n ≤ Ta}

]
(b)
= ca

∞∑
n=1

[∑
x∈S

Pa {Xn = x, n ≤ Ta}

]

= ca

∞∑
n=1

Pa {Ta ≥ n}

= ca

∞∑
n=1

Ea
[
1{n≤Ta}

]
(c)
= caEa

[ ∞∑
n=1

1{n≤Ta}

]

= caEa [Ta]
(d)
< +∞,

which gives a contradiction. Here, the above steps (a)–(d) holds since:

(a) we can change the order of expectation and summation by the monotone convergence theorem;

(b) the Fubini-Tonelli’s theorem;

(c) the same reason as the step (a);

(d) we have assumed that p(·, ·) is positive recurrent.

Hence, we can conclude that p(·, ·) is not positive recurrent.

Problem 5 (Exercise 5.5.9. in [1]).

Suppose that {Xn}∞n=0 is an S-valued homogeneous Markov chain with transition probability p(·, ·) :

S × S → [0, 1] such that Ex [X1] ≤ x − ε for all x > K, where S ⊆ [0,+∞) is a countable state space and

ε > 0. We may assume that the given Markov chain is the sequence of coordinate maps {Xn(ω) := ωn}∞n=0

defined on the sequence space (Ω0,F∞), where the canonical construction of the probability measure Pµ on

(Ω0,F∞) in Section 5.2 of [1] makes it an S-valued homogeneous Markov chain with initial distribution µ

and transition probability p(·, ·). Now, we will prove the following result:

Claim 5. {Yn∧τ}∞n=0 is a positive supermartingale with respect to the canonical filtration {Fn := σ (X0, X1, · · · , Xn)}∞n=0

on the canonical probability space (Ω0,F∞,Pµ), where µ(·) is a probability measure on
(
S, 2S

)
with finite first

moment, i.e.,
∑

x∈S xµ(x) < +∞.
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Proof of Claim 5.

We first prove the Pµ-integrability of Yn∧τ . From the inequality

Yn∧τ = Yn · 1{τ≥n} +
n−1∑
k=0

Yk · 1{τ=k}

= Yn · 1{τ≥n} +

n−1∑
k=0

(Xk + kε)1{τ=k}

(a)

≤ Yn · 1{τ≥n} +
n−1∑
k=0

(K + kε)1{τ=k}

≤ Yn · 1{τ≥n} + (K + nε) ,

where the step (a) holds since if τ = k, then Xk ≤ K, it suffices to show that Yn · 1{τ≥n} ∈ L1 (Ω0,F∞,Pµ).

Choose any A0, A1, · · · , An−1 ⊆ S. Then, we have

Eµ
[(
Yn · 1{τ≥n}

)
1{X0∈A0,X1∈A1,··· ,Xn−1∈An−1}

]
(b)
= Eµ

(Xn + nε)

n−1∏
j=0

1Aj∩(K,+∞)(Xj)


(c)
=

∑
x0∈A0∩(K,+∞)

µ(x0)

 ∑
x1∈A1∩(K,+∞)

p(x0, x1)· · ·


∑
xn−1∈An−1∩(K,+∞)

p(xn−2, xn−1)

[∑
xn∈S

p(xn−1, xn) (xn + nε)

]
︸ ︷︷ ︸

= Exn−1 [X1+nε]

 · · ·



(d)

≤
∑

x0∈A0∩(K,+∞)

µ(x0)

 ∑
x1∈A1∩(K,+∞)

p(x0, x1)· · ·
 ∑
xn−1∈An−1∩(K,+∞)

p(xn−2, xn−1) {xn−1 + (n− 1)ε}

 · · ·


(e)
= Eµ

{Xn−1 + (n− 1)ε}
n−1∏
j=0

1Aj∩(K,+∞)(Xj)


= Eµ

[(
Yn−1 · 1{τ≥n}

)
1{X0∈A0,X1∈A1,··· ,Xn−1∈An−1}

]
,

(15)

where the above steps (b)–(e) can be validated as follows:

(b) {τ ≥ n} = {X0 > K,X1 > K, · · · , Xn−1 > K};

(c) the equation (5.2.3) in [1];

(d) since xn−1 > K, we have Exn−1 [X1] ≤ xn−1 − ε;

(e) the same reason as the step (c).
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Putting A0 = A1 = · · · = An−1 = S into the bound (15) yields

Eµ
[
Yn · 1{τ≥n}

]
≤ Eµ

[
Yn−1 · 1{τ≥n}

]
≤ Eµ

[
Yn−1 · 1{τ≥n−1}

]
(16)

for every n ∈ N. Applying the inequality (16) inductively, we may deduce that

Eµ
[
Yn · 1{τ≥n}

]
≤ Eµ

[
Y0 · 1{τ≥0}

]
= Eµ [X0] =

∑
x∈S

xµ(x)
(f)
< +∞,

where the step (f) is due to the assumption of the initial distribution µ(·), thereby Yn·1{τ≥n} ∈ L1 (Ω0,F∞,Pµ).

This establishes the Pµ-integrability of Yn∧τ .

Now, put A0 = {x0} , A1 = {x1} , · · · , An−1 = {xn−1} for x0, x1, · · · , xn−1 ∈ S. Then, we obtain

Eµ
[(
Yn · 1{τ≥n}

)
1{(X0,X1,··· ,Xn−1)=(x0,x1,··· ,xn−1)}

]
≤ Eµ

[(
Yn−1 · 1{τ≥n}

)
1{(X0,X1,··· ,Xn−1)=(x0,x1,··· ,xn−1)}

]
(17)

for any (x0, x1, · · · , xn−1) ∈ Sn. So given any B ∈ Sn, one has

Eµ
[(
Yn · 1{τ≥n}

)
1{(X0,X1,··· ,Xn−1)∈B}

]
=

∑
(x0,x1,··· ,xn−1)∈B

Eµ
[(
Yn · 1{τ≥n}

)
1{(X0,X1,··· ,Xn−1)=(x0,x1,··· ,xn−1)}

]
(g)

≤
∑

(x0,x1,··· ,xn−1)∈B

Eµ
[(
Yn−1 · 1{τ≥n}

)
1{(X0,X1,··· ,Xn−1)=(x0,x1,··· ,xn−1)}

]
= Eµ

[(
Yn−1 · 1{τ≥n}

)
1{(X0,X1,··· ,Xn−1)∈B}

]
,

where the step (g) follows from the bound (17). From the fact {τ ≥ n} = Ω0 ∈ {τ ≤ n− 1} ∈ Fn−1, which

holds since τ is a stopping time with respect to the canonical filtration {Fn}∞n=0, one can conclude that

Eµ
[
Yn · 1{τ≥n}

∣∣Fn−1] Pµ-a.s.
≤ Yn−1 · 1{τ≥n} (18)

for every n ∈ N. Therefore, we finally arrive at

Eµ [Yn∧τ | Fn−1]
(h)
= Eµ

[
Yn · 1{τ≥n}

∣∣Fn−1]+

n−1∑
k=0

Yk · 1{τ=k}

(i)

≤ Yn−1 · 1{τ≥n} +

n−1∑
k=0

Yk · 1{τ=k}

= Y(n−1)∧τ

Pµ-almost surely, where the step (h) holds since for every k ∈ [0 : n− 1], Yk · 1{τ=k} ∈ Fk ⊆ Fn−1, and the

step (i) makes use of the inequality (18). Hence, {Yn∧τ}∞n=0 is a positive supermartingale with respect to

the canonical filtration {Fn}∞n=0 on the canonical probability space (Ω0,F∞,Pµ), where µ(·) is a probability

measure on
(
S, 2S

)
with

∑
x∈S xµ(x) < +∞.

Note that every Dirac measure centered on some fixed state x ∈ S, δx(·), satisfies the condition of Claim

5. Indeed, ∑
y∈S

y · δx(y) = x < +∞

11



for all x ∈ S. Thus, {Yn∧τ}∞n=0 is a positive supermartingale with respect to the canonical filtration {Fn}∞n=0

on the canonical probability space (Ω0,F∞,Px), for every state x ∈ S. Due to the optional stopping theorem

for non-negative supermartingales (Theorem 4.8.4 in [1]), one has

x = Ex [X0] = Ex [Y0∧τ ]

≥ Ex [Yτ∧τ ]

= Ex [Yτ ]

= Ex [Xτ + τε]

≥ ε · Ex [τ ] ,

thereby Ex [τ ] ≤ x
ε for all x ∈ S. This completes the solution to Problem 5.
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