MAS651 Theory of Stochastic Processes Homework #4

20150597 Jeonghwan Lee

Department of Mathematical Sciences, KAIST

March 30, 2021

Throughout this homework, let \mathbb{Z}_+ denote the set of all non-negative integers, \mathbb{R}_+ be the set of all non-negative real numbers, and $[a:b] := \{a, a + 1, \dots, b - 1, b\}$ for $a, b \in \mathbb{Z}$ with $a \leq b$. We also write [n] := [1:n] for $n \in \mathbb{N}$. Moreover, \biguplus denotes the *disjoint union*, and given a set A and $k \in \mathbb{Z}_+$, $\binom{A}{k} := \{B \subseteq A : |B| = k\}$. Also, we use the symbol \mathbb{S} instead of S to denote the underlying state space of stochastic processes.

We assume throughout this homework that the underlying state space S is countable and it is equipped with the discrete σ -field $2^{\mathbb{S}}$ on S. Since $(S, 2^{\mathbb{S}})$ is a *nice measurable space*, it admits the canonical construction in *Section 5.2* in [1] of the probability measure \mathbb{P}_{μ} on the sequence space $(\Omega_0, \mathcal{F}_{\infty})$ so that the sequence of coordinate maps $\{X_n(\omega) := \omega_n\}_{n=0}^{\infty}$ is a homogeneous Markov chain with initial distribution μ and transition probability $p(\cdot, \cdot) : S \times 2^{\mathbb{S}} \to [0, 1]$. We remark that it is conventional to write $p(x, y) := p(x, \{y\})$ for $x, y \in S$.

Problem 1 (*Exercise 5.5.2.* in [1]).

Recall that for any given recurrent state $x \in \mathbb{S}$ and any state $y \in \mathbb{S} \setminus \{x\}$,

$$\begin{aligned}
\mu_{x}(y) &:= \mathbb{E}_{x} \left[\sum_{n=0}^{T_{x}-1} \mathbb{1}_{\{X_{n}=y\}} \right] \\
\stackrel{(a)}{=} \mathbb{E}_{x} \left[\left(\sum_{n=0}^{T_{x}-1} \mathbb{1}_{\{X_{n}=y\}} \right) \mathbb{1}_{\{T_{x}<+\infty\}} \right] \\
\stackrel{(b)}{=} \mathbb{E}_{x} \left[\left(\sum_{k=0}^{\infty} \mathbb{1}_{\{\sum_{n=0}^{T_{x}-1} \mathbb{1}_{\{X_{n}=y\}}=k\}} \right) \mathbb{1}_{\{T_{x}<+\infty\}} \right] \\
\stackrel{(c)}{=} \sum_{k=1}^{\infty} k \cdot \mathbb{P}_{x} \left\{ \sum_{n=0}^{T_{x}-1} \mathbb{1}_{\{X_{n}=y\}}=k \text{ and } T_{x}<+\infty \right\} \\
\stackrel{(d)}{=} \sum_{k=1}^{\infty} k \cdot \mathbb{P}_{x} \left\{ \sum_{n=0}^{T_{x}-1} \mathbb{1}_{\{X_{n}=y\}}=k \right\},
\end{aligned}$$
(1)

where the above steps (a)–(c) holds since

- (a) since the state x is recurrent, $\mathbb{P}_x \{T_x < +\infty\} = 1;$
- (b) if $T_x < +\infty$, then $\sum_{n=0}^{T_x-1} \mathbb{1}_{\{X_n=y\}} < +\infty$;

- (c) the Fubini-Tonelli's theorem, since the summands are non-negative;
- (d) the same reason as the step (a).

Here, $T_x := \inf \{n \ge 1 : X_n = x\}$ denotes the first hitting time to state $x \in S$.

Claim 1. For every $k \in \mathbb{N}$, we have

$$\mathbb{P}_{x}\left\{\sum_{n=0}^{T_{x}-1}\mathbb{1}_{\{X_{n}=y\}}=k\right\}=w_{xy}\left(1-w_{yx}\right)^{k-1}w_{yx}.$$
(2)

Proof of Claim 1.

Let $Y_k := \mathbb{1}_{\{\sum_{n=0}^{T_x-1} \mathbb{1}_{\{X_n=y\}}=k\}}$ for $k \in \mathbb{N}$. It's clear that each Y_k is a bounded measurable function defined on the sequence space $(\Omega_0, \mathcal{F}_\infty)$. If $T_y(\omega) < T_x(\omega)$, then

$$\begin{pmatrix} Y_{k} \circ \theta_{T_{y}} \end{pmatrix} (\omega) = \mathbb{1}_{\{\sum_{n=0}^{T_{x}-1} \mathbb{1}_{\{X_{n}=y\}}=k\}} \begin{pmatrix} \theta_{T_{y}}(\omega) \end{pmatrix} \\ = \begin{cases} 1 & \text{if } \sum_{n=0}^{T_{x}(\theta_{T_{y}}(\omega))-1} \mathbb{1}_{\{X_{n}(\theta_{T_{y}}(\omega))=1\}} = k; \\ 0 & \text{otherwise} \end{cases}$$

$$\begin{pmatrix} \text{e} \\ = \\ 1 & \text{if } \sum_{n=0}^{T_{x}(\omega)-T_{y}(\omega)-1} \mathbb{1}_{\{\omega_{n}+T_{y}(\omega)=y\}} = k; \\ 0 & \text{otherwise} \end{cases}$$

$$\begin{pmatrix} \text{f} \\ = \\ 1 & \text{if } \sum_{n=1}^{T_{x}(\omega)-1} \mathbb{1}_{\{\omega_{n}=y\}} = k; \\ 0 & \text{otherwise} \end{cases}$$

$$= \mathbb{1}_{\{\sum_{n=1}^{T_{x}(\omega)-1} \mathbb{1}_{\{X_{n}=y\}}=k\}}$$

$$(3)$$

where the step (e) holds since when $T_y(\omega) < T_x(\omega)$,

$$T_x \left(\theta_{T_y}(\omega) \right) = \inf \left\{ n \ge 1 : X_n \left(\theta_{T_y}(\omega) \right) = x \right\}$$
$$= \inf \left\{ n \ge 1 : \omega_{n+T_y(\omega)} = x \right\}$$
$$= \inf \left\{ n \ge T_y(\omega) + 1 : \omega_n = x \right\} - T_y(\omega)$$
$$\stackrel{\text{(g)}}{=} \inf \left\{ n \ge 1 : X_n = x \right\} - T_y(\omega)$$
$$= T_x(\omega) - T_y(\omega),$$

where the step (g) follows from the fact that $T_y(\omega) < T_x(\omega)$ implies that there is no visits to state x from time 1 to $T_y(\omega)$, and the step (f) is due to the fact that there is no visits to state y from time 1 to $T_y(\omega) - 1$.

Thus,

$$\mathbb{P}_{x}\left\{\sum_{n=0}^{T_{x}(\omega)-1} \mathbb{1}_{\{X_{n}=y\}} = k\right\} \stackrel{\text{(h)}}{=} \mathbb{P}_{x}\left\{\sum_{n=1}^{T_{x}(\omega)-1} \mathbb{1}_{\{X_{n}=y\}} = k\right\}$$

$$= \mathbb{E}_{x}\left[\mathbb{1}_{\left\{\sum_{n=1}^{T_{x}(\omega)-1} \mathbb{1}_{\{X_{n}=y\}} = k\right\}} \cdot \mathbb{1}_{\{T_{y} < T_{x}\}}\right]$$

$$\stackrel{\text{(i)}}{=} \mathbb{E}_{x}\left[\mathbb{1}_{\left\{\sum_{n=1}^{T_{x}(\omega)-1} \mathbb{1}_{\{X_{n}=y\}} = k\right\}} \cdot \mathbb{1}_{\{T_{y} < T_{x}\}}\right]$$

$$\stackrel{\text{(j)}}{=} \mathbb{E}_{x}\left[(Y_{k} \circ \theta_{T_{y}}) \cdot \mathbb{1}_{\{T_{y} < T_{x}\}}\right]$$

$$= \mathbb{E}_{x}\left[\mathbb{E}_{x}\left[(Y_{k} \circ \theta_{T_{y}}) \cdot \mathbb{1}_{\{T_{y} < T_{x}\}}\right]$$

$$\stackrel{\text{(j)}}{=} \mathbb{E}_{x}\left[\mathbb{E}_{x}\left[Y_{k} \circ \theta_{T_{y}}\right] \mathbb{1}_{\{T_{y} < T_{x}\}}\right]$$

$$\stackrel{\text{(j)}}{=} \mathbb{E}_{x}\left[\mathbb{E}_{X_{T_{y}}}\left[Y_{k}\right] \mathbb{1}_{\{T_{y} < T_{x}\}}\right]$$

$$\stackrel{\text{(m)}}{=} \mathbb{E}_{x}\left[\mathbb{E}_{y}\left[Y_{k}\right] \mathbb{1}_{\{T_{y} < T_{x}\}}\right]$$

$$= \mathbb{E}_{y}\left[Y_{k}\right] \mathbb{P}_{x}\left\{T_{y} < T_{x}\right\}$$

$$= \mathbb{P}_{y}\left\{\sum_{n=0}^{T_{x}(\omega)-1} \mathbb{1}_{\{X_{n}=y\}} = k\right\} \cdot w_{xy},$$

where the above steps (h)–(m) can be justified as follows:

(h) $x \neq y;$

(i)
$$\left\{ \sum_{n=1}^{T_x(\omega)-1} \mathbb{1}_{\{X_n=y\}} = k \right\} \subseteq \{T_y < T_x\};$$

- (j) the equality (3);
- (k) $\{T_y < T_x\} \in \mathcal{F}_{T_y}$, where $\{\mathcal{F}_n := \sigma (X_0, X_1, \cdots, X_n)\}_{n=0}^{\infty}$ is the canonical filtration of the Markov chain $\{X_n\}_{n=0}^{\infty}$, since

$$\{T_y < T_x\} \cap \{T_y = n\} = \{T_x > n\} \cap \{T_y = n\} = (\Omega_0 \setminus \{T_x \le n\}) \cap \{T_y = n\} \in \mathcal{F}_n$$

for every $n \in \mathbb{Z}_+$;

- (l) the strong Markov property (*Theorem 5.2.5* in [1]);
- (m) if $T_y < T_x \le +\infty$, then $X_{T_y} = y$.

Now, we turn our attention to the probability $\mathbb{E}_{y}[Y_{k}] = \mathbb{P}_{y}\left\{\sum_{n=0}^{T_{x}(\omega)-1} \mathbb{1}_{\{X_{n}=y\}} = k\right\}$. If k = 1, we find that

$$\mathbb{E}_{y}\left[Y_{1}\right] = \mathbb{P}_{y}\left\{\sum_{n=0}^{T_{x}(\omega)-1} \mathbb{1}_{\{X_{n}=y\}} = 1\right\}$$

$$= \mathbb{P}_{y}\left\{X_{n} \in \mathbb{S} \setminus \{y\} \text{ for } 1 \leq n \leq T_{x}-1\right\}$$

$$= \mathbb{P}_{y}\left\{T_{x} < T_{y}\right\} = w_{yx}.$$
(5)

Hereafter, we assume that $k \ge 2$. Then, we obtain

$$\mathbb{E}_{y} [Y_{k}] = \mathbb{P}_{y} \left\{ \sum_{n=1}^{T_{x}(\omega)-1} \mathbb{1}_{\{X_{n}=y\}} = k-1 \right\} \\ = \mathbb{E}_{y} \left[\mathbb{1}_{\left\{ \sum_{n=1}^{T_{x}(\omega)-1} \mathbb{1}_{\{X_{n}=y\}} = k-1 \right\}} \cdot \mathbb{1}_{\{T_{y} < T_{x}\}} \right] \\ \stackrel{(o)}{=} \mathbb{E}_{y} \left[\mathbb{1}_{\left\{ \sum_{n=1}^{T_{x}(\omega)-1} \mathbb{1}_{\{X_{n}=y\}} = k-1 \right\}} \cdot \mathbb{1}_{\{T_{y} < T_{x}\}} \right] \\ = \mathbb{E}_{y} \left[\mathbb{E}_{y} \left[(Y_{k-1} \circ \theta_{T_{y}}) \cdot \mathbb{1}_{\{T_{y} < T_{x}\}} \right] \\ = \mathbb{E}_{y} \left[\mathbb{E}_{y} \left[(Y_{k-1} \circ \theta_{T_{y}}) \cdot \mathbb{1}_{\{T_{y} < T_{x}\}} \right] \right] \\ \stackrel{(e)}{=} \mathbb{E}_{y} \left[\mathbb{E}_{y} \left[\mathbb{E}_{X_{T_{y}}} \left[Y_{k-1} \right] \mathbb{1}_{\{T_{y} < T_{x}\}} \right] \\ \stackrel{(f)}{=} \mathbb{E}_{y} \left[\mathbb{E}_{x_{T_{y}}} \left[Y_{k-1} \right] \mathbb{1}_{\{T_{y} < T_{x}\}} \right] \\ \stackrel{(f)}{=} \mathbb{E}_{y} \left[\mathbb{E}_{y} \left[\mathbb{E}_{y} \left[Y_{k-1} \right] \mathbb{1}_{\{T_{y} < T_{x}\}} \right] \\ = \mathbb{E}_{y} \left[Y_{k-1} \right] \underbrace{\mathbb{P}_{y} \left\{ T_{y} < T_{x} \right\}}_{= 1 - \mathbb{P}_{y} \left\{ T_{x} < T_{y} \right\}} \\ = (1 - w_{yx}) \mathbb{E}_{y} \left[Y_{k-1} \right],$$

where the above steps (n)-(r) can be validated as follows:

- (n) for $k \ge 2$, $\left\{ \sum_{n=1}^{T_x(\omega)-1} \mathbb{1}_{\{X_n = y\}} = k-1 \right\} \subseteq \{T_y < T_x\};$
- (o) the equation (3);
- (p) the same reason as the step (k);
- (q) the strong Markov property (*Theorem 5.2.5* in [1]);
- (r) if $T_y < T_x \le +\infty$, then $X_{T_y} = y$.

So, we may inductively deduce that for every $k \ge 2$,

$$\mathbb{E}_{y}[Y_{k}] = (1 - w_{yx})^{k-1} \mathbb{E}_{y}[Y_{1}] \stackrel{(s)}{=} (1 - w_{yx})^{k-1} w_{yx}, \tag{7}$$

where the step (s) makes use of the equation (5). Putting (7) into the equation (4) yields

$$\mathbb{P}_{x}\left\{\sum_{n=0}^{T_{x}(\omega)-1}\mathbb{1}_{\{X_{n}=y\}}=k\right\}=w_{xy}\mathbb{E}_{y}\left[Y_{k}\right]=w_{xy}\left(1-w_{yx}\right)^{k-1}w_{yx}$$

for all $k \in \mathbb{N}$.

Hence, for any state $y \in \mathbb{S} \setminus \{x\}$,

$$\mu_x(y) = \sum_{k=1}^{\infty} k \cdot \mathbb{P}_x \left\{ \sum_{n=0}^{T_x - 1} \mathbb{1}_{\{X_n = y\}} = k \right\}$$
$$\stackrel{(u)}{=} \sum_{k=1}^{\infty} k w_{xy} \left(1 - w_{yx} \right)^{k-1} w_{yx}$$
$$= w_{xy} w_{yx} \cdot \frac{1}{\{1 - (1 - w_{yx})\}^2}$$
$$= \frac{w_{xy}}{w_{yx}},$$

where the step (r) is due to Claim 1. For the case y = x, it's clear that $\mu_x(x) = \frac{w_{xx}}{w_{xx}} = 1$ and this completes the proof.

Problem 2 (*Exercise 5.5.3.* in [1]).

Fix any states $x, y \in \mathbb{S}$, and let $\nu_{xy} : \mathbb{S} \to [0, +\infty)$ be defined by

$$\nu_{xy}(z) := \mu_x(y)\mu_y(z), \ \forall z \in \mathbb{S}.$$

Note that $\nu_{xy}(z) < +\infty$ for all $z \in S$ due to the technical note in the page 303 of [1]. Then for any $w \in S$, we have

$$\sum_{z \in \mathbb{S}} \nu_{xy}(z) p(z, w) = \mu_x(y) \sum_{z \in \mathbb{S}} \mu_y(z) p(z, w)$$

$$\stackrel{(a)}{=} \mu_x(y) \mu_y(w)$$

$$= \nu_{xy}(w),$$
(8)

where the step (a) holds since the state $y \in \mathbb{S}$ is recurrent, $\mu_y(\cdot) : \mathbb{S} \to [0, +\infty)$ is a stationary measure for the transition probability $p(\cdot, \cdot) : \mathbb{S} \times \mathbb{S} \to [0, 1]$ by *Theorem 5.5.7* in [1]. Therefore, $\nu_{xy}(\cdot) : \mathbb{S} \to [0, +\infty)$ is a stationary measure for $p(\cdot, \cdot)$. On the other hand, $\mu_x(\cdot) : \mathbb{S} \to [0, +\infty)$ defines a stationary measure for $p(\cdot, \cdot)$ by *Theorem 5.5.7* in [1]. So, *Theorem 5.5.9* in [1] implies

$$\nu_{xy}(\cdot) = c_{xy} \cdot \mu_x(\cdot) \tag{9}$$

for some constant $c_{xy} \geq 0$. In particular, we obtain

$$\mu_x(y) = \mu_x(y)\mu_y(y) = \nu_{xy}(y) = c_{xy} \cdot \mu_x(y).$$
(10)

Lemma 1. If $p(\cdot, \cdot) : \mathbb{S} \times \mathbb{S} \to [0, 1]$ is irreducible and $\mu(\cdot) : \mathbb{S} \to [0, +\infty]$ is a stationary measure for the transition probability $p(\cdot, \cdot)$ such that $\mu(a) > 0$ for some $a \in \mathbb{S}$, then $\mu(x) > 0$ for all $x \in \mathbb{S}$.

Proof of Lemma 1.

Assume on the contrary that $\mu(x) = 0$ for some $x \in \mathbb{S} \setminus \{a\}$. Due to the irreducibility of $p(\cdot, \cdot)$, there is an $N(a, x) \in \mathbb{N}$ such that

$$p^{N(a,x)}(a,x) = \mathbb{P}_a \left\{ X_{N(a,x)} = x \right\} > 0.$$

Since $\mu(\cdot)$ is a stationary measure for $p(\cdot, \cdot)$, we obtain

$$0 = \mu(x) = \sum_{y \in \mathbb{S}} \mu(y) p^{N(a,x)}(y,x) \ge \mu(a) p^{N(a,x)}(a,x),$$
(11)

and the last term of the inequality (11), thereby it yields a contradiction! Therefore, $\mu(x) > 0$ for all $x \in S$.

Since $\mu_x(x) = 1 > 0$, Lemma 1 implies that $\mu_x(z) > 0$ for all $z \in S$. So, we can divide the equation (10) by $\mu_x(y)$ and thus we arrive at $c_{xy} = 1$. Hence,

$$\mu_x(z) = \nu_{xy}(z) = \mu_x(y)\mu_y(z)$$

for all $z \in \mathbb{S}$.

Problem 3 (*Exercise 5.5.4.* in [1]).

Fix any state $y \in S$. If x = y, then it's clear from the definition of *positive recurrence* that $\mathbb{E}_y[T_y] < +\infty$. So, we may assume that $x \in S \setminus \{y\}$.

Claim 2. $\mathbb{E}_{x}[T_{y}] \cdot \mathbb{P}_{y}\{T_{x} < T_{y}\} \leq \mathbb{E}_{y}[T_{y}].$

Proof of Claim 2.

To begin with, we note that $T_y \in L^1(\Omega_0, \mathcal{F}_\infty, \mathbb{P}_y)$ due to the positive recurrence of state y. One can see that if $T_x(\omega) < T_y(\omega)$, then

$$(T_y \circ \theta_{T_x})(\omega) = \inf \{n \ge 1 : X_n(\theta_{T_x}(\omega)) = y\}$$

= $\inf \{n \ge T_x(\omega) + 1 : X_n(\omega) = y\} - T_x(\omega)$
 $\stackrel{(a)}{=} \inf \{n \ge 1 : X_n(\omega) = y\} - T_x(\omega)$
= $T_y(\omega) - T_x(\omega),$

where the step (a) holds since if $T_x(\omega) < T_y(\omega)$, then $\omega_n = X_n(\omega) \in \mathbb{S} \setminus \{y\}$ for all $1 \le n \le T_x(\omega)$. In other words,

$$(T_y - T_x) \cdot \mathbb{1}_{\{T_x < T_y\}} = (T_y \circ \theta_{T_x}) \cdot \mathbb{1}_{\{T_x < T_y\}}$$
(12)

on Ω_0 . Hence, the following holds:

$$\begin{split} \mathbb{E}_{y}\left[T_{y}\right] &\geq \mathbb{E}_{y}\left[\left(T_{y} - T_{x}\right) \cdot \mathbbm{1}_{\left\{T_{x} < T_{y}\right\}}\right] \\ &\stackrel{(\mathrm{b})}{=} \mathbb{E}_{y}\left[\left(T_{y} \circ \theta_{T_{x}}\right) \cdot \mathbbm{1}_{\left\{T_{x} < T_{y}\right\}}\right] \\ &= \mathbb{E}_{y}\left[\mathbb{E}_{y}\left[\left(T_{y} \circ \theta_{T_{x}}\right) \cdot \mathbbm{1}_{\left\{T_{x} < T_{y}\right\}}\right| \mathcal{F}_{T_{x}}\right]\right] \\ &\stackrel{(\mathrm{c})}{=} \mathbb{E}_{y}\left[\mathbb{E}_{y}\left[\mathbbm{1}_{y} \circ \theta_{T_{x}}\right| \mathcal{F}_{T_{x}}\right] \mathbbm{1}_{\left\{T_{x} < T_{y}\right\}}\right] \\ &\stackrel{(\mathrm{d})}{=} \mathbb{E}_{y}\left[\mathbbm{1}_{\left\{T_{x} \in T_{y}\right\}}\mathbbm{1}_{\left\{T_{x} < T_{y}\right\}}\right] \\ &\stackrel{(\mathrm{e})}{=} \mathbbm{1}_{\left\{T_{x}\left[T_{y}\right]\mathbbm{1}_{\left\{T_{x} < T_{y}\right\}}\right] \\ &= \mathbbm{1}_{x}\left[T_{y}\right] \cdot \mathbbm{1}_{\left\{T_{x} < T_{y}\right\}}, \end{split}$$

where the above steps (b)–(e) can be justified as follows:

(b) the equality (12);

(c) $\{T_x < T_y\} \in \mathcal{F}_{T_x}$, since

$$\{T_x < T_y\} \cap \{T_x = n\} = \{T_y > n\} \cap \{T_x = n\} = (\Omega_0 \setminus \{T_y \le n\}) \cap \{T_x = n\} \in \mathcal{F}_n$$

for every $n \in \mathbb{Z}_+$, where $\{\mathcal{F}_n := \sigma(X_0, X_1, \cdots, X_n)\}_{n=0}^{\infty}$ denotes the canonical filtration of the Markov chain $\{X_n\}_{n=0}^{\infty}$;

(d) the strong Markov property (*Theorem 5.2.5* in [1]);

(e) if
$$T_x < T_y \le +\infty$$
, then $X_{T_x} = x$,

and this finishes the proof of Claim 2.

Claim 3. $\mathbb{P}_{y} \{ T_{x} < T_{y} \} > 0.$

Proof of Claim 3.

Due to the irreducibility of $p(\cdot, \cdot)$,

$$K(y,x) := \inf \{ n \in \mathbb{N} : p^n(y,x) = \mathbb{P}_y \{ X_n = x \} > 0 \} < +\infty.$$

Since $\{T_x = K(y, x)\} \subseteq \{X_{K(y,x)} = x\}$, it's clear that $\mathbb{P}_y\{T_x = K(y, x)\} \leq \mathbb{P}_y\{X_{K(y,x)} = x\}$. On the other hand,

$$\begin{split} \mathbb{P}_{y}\left\{X_{K(y,x)} = x\right\} &= \mathbb{P}_{y}\left\{X_{K(y,x)} = x, T_{x} \leq K(y,x)\right\} \\ &= \sum_{l=1}^{K(y,x)-1} \mathbb{P}_{y}\left\{X_{K(y,x)} = x, T_{x} = l\right\} + \mathbb{P}_{y}\left\{X_{K(y,x)} = x, T_{x} = K(y,x)\right\} \\ &\stackrel{\text{(f)}}{\leq} \sum_{l=1}^{K(y,x)-1} \mathbb{P}_{y}\left\{X_{l} = x, X_{K(y,x)} = x\right\} + \mathbb{P}_{y}\left\{T_{x} = K(y,x)\right\} \\ &\stackrel{\text{(g)}}{=} \sum_{l=1}^{K(y,x)-1} \underbrace{p_{l}^{l}(y,x)}_{= 0} p^{K(y,x)-l}(x,x) + \mathbb{P}_{y}\left\{T_{x} = K(y,x)\right\} \\ &\stackrel{\text{(h)}}{=} \mathbb{P}_{y}\left\{T_{x} = K(y,x)\right\}, \end{split}$$

where the above steps (f)–(h) can be validated as follows:

- (f) $\{T_x = l\} \subseteq \{X_l = x\}$ for $1 \le l \le K(y, x)$;
- (g) a consequence of Chapman-Kolmogorov's equation (*Theorem 5.2.4* in [1]);
- (h) due to the minimality of K(y, x) in the set $\{n \in \mathbb{N} : p^n(y, x) = \mathbb{P}_y \{X_n = x\} > 0\}.$

Thus, we obtain $\mathbb{P}_y \{T_x = K(y, x)\} = \mathbb{P}_y \{X_{K(y, x)} = x\}$. Also one has for every $1 \le l \le K(y, x) - 1$,

$$\mathbb{P}_{y} \{ T_{x} = K(y, x), T_{y} < T_{x} \} = \sum_{l=1}^{K(y, x)-1} \mathbb{P}_{y} \{ T_{x} = K(y, x), T_{y} = l \} \\
\leq \sum_{l=1}^{K(y, x)-1} \mathbb{P}_{y} \{ X_{l} = y, X_{K(y, x)} = x \} \\
\stackrel{(i)}{=} \sum_{l=1}^{K(y, x)-1} p^{l}(y, y) \underbrace{p^{K(y, x)-l}(y, x)}_{= 0} \\
\stackrel{(j)}{=} 0.$$
(13)

where the step (i) is a consequence of Chapman-Kolmogorov's equation (*Theorem 5.2.4* in [1]), and the step (j) follows from the minimality of K(y, x) in the set $\{n \in \mathbb{N} : p^n(y, x) = \mathbb{P}_y \{X_n = x\} > 0\}$. Hence,

$$\mathbb{P}_{y} \{ T_{x} < T_{y} \} \geq \mathbb{P}_{y} \{ T_{x} < T_{y}, T_{x} = K(y, x) \}$$

$$= \mathbb{P}_{y} \{ T_{x} = K(y, x) \} - \underbrace{\mathbb{P}_{y} \{ T_{y} < T_{x}, T_{x} = K(y, x) \}}_{= 0}$$

$$\stackrel{(k)}{=} p^{K(y, x)}(y, x) > 0,$$

where the step (k) makes use of the fact $\mathbb{P}_y \{T_x = K(y, x)\} = \mathbb{P}_y \{X_{K(y,x)} = x\}$ together with (13), and this establishes our desired claim.

Combining Claim 2 together with Claim 3 gives

$$\mathbb{E}_{x}\left[T_{y}\right] \leq \frac{\mathbb{E}_{y}\left[T_{y}\right]}{\mathbb{P}_{y}\left\{T_{x} < T_{y}\right\}} \stackrel{(1)}{<} +\infty,$$

where the step (l) is owing to the positive recurrence of the state $y \in S$, and this completes the solution to the problem.

Problem 4 (*Exercise 5.5.5.* in [1]).

Assume that $p(\cdot, \cdot) : \mathbb{S} \times \mathbb{S} \to [0, 1]$ is irreducible and has a stationary measure $\mu(\cdot) : \mathbb{S} \to [0, +\infty]$ such that $\mu \not\equiv +\infty$ on \mathbb{S} and $\sum_{x \in \mathbb{S}} \mu(x) = +\infty$.

Claim 4. $\mu(x) < +\infty$ for all $x \in \mathbb{S}$.

Proof of Claim 4.

Assume on the contrary that $\mu(y) = +\infty$ for some $y \in S$. Due to the irreducibility of $p(\cdot, \cdot)$, for every $x \in S \setminus \{y\}$, there is a $K(y, x) \in \mathbb{N}$ such that

$$p^{K(y,x)}(y,x) = \mathbb{P}_y \left\{ X_{K(y,x)} = x \right\} > 0.$$

Since $\mu(\cdot): \mathbb{S} \to [0, +\infty]$ is a stationary measure for $p(\cdot, \cdot)$, we have

$$\mu(x)=\sum_{z\in\mathbb{S}}\mu(z)p^{K(y,x)}(z,x)\geq \mu(y)p^{K(y,x)}(y,x)=+\infty,$$

which implies $\mu \equiv +\infty$ on S. This contradicts the assumption that $\mu \not\equiv +\infty$ on S, and finishes the proof.

Now, let's prove that $p(\cdot, \cdot)$ is not positive recurrent. Suppose not. Then in particular, $p(\cdot, \cdot)$ is recurrent and so *Theorem 5.5.9* in [1] implies that for each $a \in \mathbb{S}$,

$$\mu(\cdot) = c_a \mu_a(\cdot) \tag{14}$$

on S, for some constant $c_a \in (0, +\infty)$. Thus, one can see that

$$\begin{split} +\infty &= \sum_{x \in \mathbb{S}} \mu(x) = c_a \sum_{x \in \mathbb{S}} \mu_a(x) \\ &= c_a \sum_{x \in \mathbb{S}} \mathbb{E}_a \left[\sum_{n=0}^{T_a - 1} \mathbbm{1}_{\{X_n = x\}} \right] \\ &= c_a \sum_{x \in \mathbb{S}} \mathbb{E}_a \left[\sum_{n=1}^{T_a} \mathbbm{1}_{\{X_n = x\}} \right] \\ &= c_a \sum_{x \in \mathbb{S}} \mathbb{E}_a \left[\sum_{n=1}^{\infty} \mathbbm{1}_{\{X_n = x\}} \cdot \mathbbm{1}_{\{n \le T_a\}} \right] \\ &\stackrel{\text{(a)}}{=} c_a \sum_{x \in \mathbb{S}} \left[\sum_{n=1}^{\infty} \mathbbm{1}_a \{X_n = x, n \le T_a\} \right] \\ &\stackrel{\text{(b)}}{=} c_a \sum_{n=1}^{\infty} \mathbbm{1}_a \{T_a \ge n\} \\ &= c_a \sum_{n=1}^{\infty} \mathbbm{1}_a \{\mathbbm{1}_{\{n \le T_a\}} \right] \\ &= c_a \mathbbm{1}_a \left[\mathbbm{1}_{\{n \le T_a\}} \right] \\ &\stackrel{\text{(c)}}{=} c_a \mathbbm{1}_a \left[\mathbbm{1}_{\{n \le T_a\}} \right] \\ &= c_a \mathbbm{1}_a [T_a] \stackrel{\text{(d)}}{\leq} +\infty, \end{split}$$

which gives a contradiction. Here, the above steps (a)-(d) holds since:

- (a) we can change the order of expectation and summation by the monotone convergence theorem;
- (b) the Fubini-Tonelli's theorem;
- (c) the same reason as the step (a);
- (d) we have assumed that $p(\cdot, \cdot)$ is positive recurrent.

Hence, we can conclude that $p(\cdot, \cdot)$ is not positive recurrent.

Problem 5 (*Exercise 5.5.9.* in [1]).

Suppose that $\{X_n\}_{n=0}^{\infty}$ is an S-valued homogeneous Markov chain with transition probability $p(\cdot, \cdot)$: $\mathbb{S} \times \mathbb{S} \to [0, 1]$ such that $\mathbb{E}_x[X_1] \leq x - \epsilon$ for all x > K, where $\mathbb{S} \subseteq [0, +\infty)$ is a countable state space and $\epsilon > 0$. We may assume that the given Markov chain is the sequence of coordinate maps $\{X_n(\omega) := \omega_n\}_{n=0}^{\infty}$ defined on the sequence space $(\Omega_0, \mathcal{F}_\infty)$, where the canonical construction of the probability measure \mathbb{P}_μ on $(\Omega_0, \mathcal{F}_\infty)$ in Section 5.2 of [1] makes it an S-valued homogeneous Markov chain with initial distribution μ and transition probability $p(\cdot, \cdot)$. Now, we will prove the following result:

Claim 5. $\{Y_{n\wedge\tau}\}_{n=0}^{\infty}$ is a positive supermartingale with respect to the canonical filtration $\{\mathcal{F}_n := \sigma(X_0, X_1, \cdots, X_n)\}_{n=0}^{\infty}$ on the canonical probability space $(\Omega_0, \mathcal{F}_{\infty}, \mathbb{P}_{\mu})$, where $\mu(\cdot)$ is a probability measure on $(\mathbb{S}, 2^{\mathbb{S}})$ with finite first moment, i.e., $\sum_{x\in\mathbb{S}} x\mu(x) < +\infty$. Proof of Claim 5.

We first prove the \mathbb{P}_{μ} -integrability of $Y_{n \wedge \tau}$. From the inequality

$$Y_{n \wedge \tau} = Y_n \cdot \mathbb{1}_{\{\tau \ge n\}} + \sum_{k=0}^{n-1} Y_k \cdot \mathbb{1}_{\{\tau = k\}}$$

= $Y_n \cdot \mathbb{1}_{\{\tau \ge n\}} + \sum_{k=0}^{n-1} (X_k + k\epsilon) \mathbb{1}_{\{\tau = k\}}$
 $\stackrel{(a)}{\le} Y_n \cdot \mathbb{1}_{\{\tau \ge n\}} + \sum_{k=0}^{n-1} (K + k\epsilon) \mathbb{1}_{\{\tau = k\}}$
 $\le Y_n \cdot \mathbb{1}_{\{\tau \ge n\}} + (K + n\epsilon),$

where the step (a) holds since if $\tau = k$, then $X_k \leq K$, it suffices to show that $Y_n \cdot \mathbb{1}_{\{\tau \geq n\}} \in L^1(\Omega_0, \mathcal{F}_\infty, \mathbb{P}_\mu)$. Choose any $A_0, A_1, \dots, A_{n-1} \subseteq \mathbb{S}$. Then, we have

$$\mathbb{E}_{\mu} \left[(Y_{n} \cdot \mathbb{1}_{\{\tau \geq n\}}) \mathbb{1}_{\{X_{0} \in A_{0}, X_{1} \in A_{1}, \cdots, X_{n-1} \in A_{n-1}\}} \right] \\
\stackrel{\text{(b)}}{=} \mathbb{E}_{\mu} \left[(X_{n} + n\epsilon) \prod_{j=0}^{n-1} \mathbb{1}_{A_{j} \cap (K, +\infty)} (X_{j}) \right] \\
\stackrel{\text{(c)}}{=} \sum_{x_{0} \in A_{0} \cap (K, +\infty)} \mu(x_{0}) \left[\sum_{x_{1} \in A_{1} \cap (K, +\infty)} p(x_{0}, x_{1}) \\ \left[\cdots \left[\sum_{x_{n-1} \in A_{n-1} \cap (K, +\infty)} p(x_{n-2}, x_{n-1}) \left[\sum_{x_{n} \in \mathbb{S}} p(x_{n-1}, x_{n}) (x_{n} + n\epsilon) \right] \right] \cdots \right] \right] \\
\stackrel{\text{(d)}}{\leq} \sum_{x_{0} \in A_{0} \cap (K, +\infty)} \mu(x_{0}) \left[\sum_{x_{1} \in A_{1} \cap (K, +\infty)} p(x_{0}, x_{1}) \\ \left[\cdots \left[\sum_{x_{n-1} \in A_{n-1} \cap (K, +\infty)} p(x_{n-2}, x_{n-1}) \{x_{n-1} + (n-1)\epsilon\} \right] \cdots \right] \right] \\
\stackrel{\text{(e)}}{\leq} \mathbb{E}_{\mu} \left[\{X_{n-1} + (n-1)\epsilon\} \prod_{j=0}^{n-1} \mathbb{1}_{A_{j} \cap (K, +\infty)} (X_{j}) \right] \\
= \mathbb{E}_{\mu} \left[(Y_{n-1} \cdot \mathbb{1}_{\{\tau \geq n\}}) \mathbb{1}_{\{X_{0} \in A_{0}, X_{1} \in A_{1}, \cdots, X_{n-1} \in A_{n-1}\}} \right],$$
(15)

where the above steps (b)-(e) can be validated as follows:

- (b) $\{\tau \ge n\} = \{X_0 > K, X_1 > K, \cdots, X_{n-1} > K\};$
- (c) the equation (5.2.3) in [1];
- (d) since $x_{n-1} > K$, we have $\mathbb{E}_{x_{n-1}} [X_1] \le x_{n-1} \epsilon$;
- (e) the same reason as the step (c).

Putting $A_0 = A_1 = \cdots = A_{n-1} = \mathbb{S}$ into the bound (15) yields

$$\mathbb{E}_{\mu}\left[Y_{n} \cdot \mathbb{1}_{\{\tau \ge n\}}\right] \le \mathbb{E}_{\mu}\left[Y_{n-1} \cdot \mathbb{1}_{\{\tau \ge n\}}\right] \le \mathbb{E}_{\mu}\left[Y_{n-1} \cdot \mathbb{1}_{\{\tau \ge n-1\}}\right]$$
(16)

for every $n \in \mathbb{N}$. Applying the inequality (16) inductively, we may deduce that

$$\mathbb{E}_{\mu}\left[Y_{n} \cdot \mathbb{1}_{\{\tau \ge n\}}\right] \le \mathbb{E}_{\mu}\left[Y_{0} \cdot \mathbb{1}_{\{\tau \ge 0\}}\right] = \mathbb{E}_{\mu}\left[X_{0}\right] = \sum_{x \in \mathbb{S}} x\mu(x) \stackrel{\text{(f)}}{<} +\infty,$$

where the step (f) is due to the assumption of the initial distribution $\mu(\cdot)$, thereby $Y_n \cdot \mathbb{1}_{\{\tau \ge n\}} \in L^1(\Omega_0, \mathcal{F}_\infty, \mathbb{P}_\mu)$. This establishes the \mathbb{P}_μ -integrability of $Y_{n \land \tau}$.

Now, put $A_0 = \{x_0\}, A_1 = \{x_1\}, \dots, A_{n-1} = \{x_{n-1}\}$ for $x_0, x_1, \dots, x_{n-1} \in \mathbb{S}$. Then, we obtain

$$\mathbb{E}_{\mu}\left[\left(Y_{n} \cdot \mathbb{1}_{\{\tau \geq n\}}\right) \mathbb{1}_{\{(X_{0}, X_{1}, \cdots, X_{n-1}) = (x_{0}, x_{1}, \cdots, x_{n-1})\}}\right] \leq \mathbb{E}_{\mu}\left[\left(Y_{n-1} \cdot \mathbb{1}_{\{\tau \geq n\}}\right) \mathbb{1}_{\{(X_{0}, X_{1}, \cdots, X_{n-1}) = (x_{0}, x_{1}, \cdots, x_{n-1})\}}\right]$$
(17)

for any $(x_0, x_1, \dots, x_{n-1}) \in \mathbb{S}^n$. So given any $B \in \mathcal{S}^n$, one has

$$\mathbb{E}_{\mu} \left[\left(Y_{n} \cdot \mathbb{1}_{\{\tau \ge n\}} \right) \mathbb{1}_{\{(X_{0}, X_{1}, \cdots, X_{n-1}) \in B\}} \right]$$

$$= \sum_{(x_{0}, x_{1}, \cdots, x_{n-1}) \in B} \mathbb{E}_{\mu} \left[\left(Y_{n} \cdot \mathbb{1}_{\{\tau \ge n\}} \right) \mathbb{1}_{\{(X_{0}, X_{1}, \cdots, X_{n-1}) = (x_{0}, x_{1}, \cdots, x_{n-1})\}} \right]$$

$$\stackrel{(g)}{\leq} \sum_{(x_{0}, x_{1}, \cdots, x_{n-1}) \in B} \mathbb{E}_{\mu} \left[\left(Y_{n-1} \cdot \mathbb{1}_{\{\tau \ge n\}} \right) \mathbb{1}_{\{(X_{0}, X_{1}, \cdots, X_{n-1}) = (x_{0}, x_{1}, \cdots, x_{n-1})\}} \right]$$

$$= \mathbb{E}_{\mu} \left[\left(Y_{n-1} \cdot \mathbb{1}_{\{\tau \ge n\}} \right) \mathbb{1}_{\{(X_{0}, X_{1}, \cdots, X_{n-1}) \in B\}} \right],$$

where the step (g) follows from the bound (17). From the fact $\{\tau \ge n\} = \Omega_0 \in \{\tau \le n-1\} \in \mathcal{F}_{n-1}$, which holds since τ is a stopping time with respect to the canonical filtration $\{\mathcal{F}_n\}_{n=0}^{\infty}$, one can conclude that

$$\mathbb{E}_{\mu}\left[Y_{n} \cdot \mathbb{1}_{\{\tau \ge n\}} \middle| \mathcal{F}_{n-1}\right] \stackrel{\mathbb{P}_{\mu}\text{-a.s.}}{\leq} Y_{n-1} \cdot \mathbb{1}_{\{\tau \ge n\}}$$
(18)

for every $n \in \mathbb{N}$. Therefore, we finally arrive at

$$\mathbb{E}_{\mu} \left[Y_{n \wedge \tau} \middle| \mathcal{F}_{n-1} \right] \stackrel{\text{(h)}}{=} \mathbb{E}_{\mu} \left[Y_n \cdot \mathbb{1}_{\{\tau \ge n\}} \middle| \mathcal{F}_{n-1} \right] + \sum_{k=0}^{n-1} Y_k \cdot \mathbb{1}_{\{\tau = k\}}$$
$$\stackrel{\text{(i)}}{\leq} Y_{n-1} \cdot \mathbb{1}_{\{\tau \ge n\}} + \sum_{k=0}^{n-1} Y_k \cdot \mathbb{1}_{\{\tau = k\}}$$
$$= Y_{(n-1) \wedge \tau}$$

 \mathbb{P}_{μ} -almost surely, where the step (h) holds since for every $k \in [0: n-1]$, $Y_k \cdot \mathbb{1}_{\{\tau=k\}} \in \mathcal{F}_k \subseteq \mathcal{F}_{n-1}$, and the step (i) makes use of the inequality (18). Hence, $\{Y_{n \wedge \tau}\}_{n=0}^{\infty}$ is a positive supermartingale with respect to the canonical filtration $\{\mathcal{F}_n\}_{n=0}^{\infty}$ on the canonical probability space $(\Omega_0, \mathcal{F}_\infty, \mathbb{P}_\mu)$, where $\mu(\cdot)$ is a probability measure on $(\mathbb{S}, 2^{\mathbb{S}})$ with $\sum_{x \in \mathbb{S}} x\mu(x) < +\infty$.

Note that every Dirac measure centered on some fixed state $x \in S$, $\delta_x(\cdot)$, satisfies the condition of Claim 5. Indeed,

$$\sum_{y \in \mathbb{S}} y \cdot \delta_x(y) = x < +\infty$$

for all $x \in \mathbb{S}$. Thus, $\{Y_{n \wedge \tau}\}_{n=0}^{\infty}$ is a positive supermartingale with respect to the canonical filtration $\{\mathcal{F}_n\}_{n=0}^{\infty}$ on the canonical probability space $(\Omega_0, \mathcal{F}_{\infty}, \mathbb{P}_x)$, for every state $x \in \mathbb{S}$. Due to the optional stopping theorem for non-negative supermartingales (*Theorem 4.8.4* in [1]), one has

$$x = \mathbb{E}_{x} [X_{0}] = \mathbb{E}_{x} [Y_{0 \wedge \tau}]$$

$$\geq \mathbb{E}_{x} [Y_{\tau \wedge \tau}]$$

$$= \mathbb{E}_{x} [Y_{\tau}]$$

$$= \mathbb{E}_{x} [X_{\tau} + \tau \epsilon]$$

$$\geq \epsilon \cdot \mathbb{E}_{x} [\tau],$$

thereby $\mathbb{E}_x[\tau] \leq \frac{x}{\epsilon}$ for all $x \in \mathbb{S}$. This completes the solution to Problem 5.

References

[1] Rick Durrett. Probability: theory and examples, volume 49. Cambridge university press, 2019.