MAS651 Theory of Stochastic Processes Homework \#4

20150597 Jeonghwan Lee
Department of Mathematical Sciences, KAIST

March 30, 2021

Throughout this homework, let \mathbb{Z}_{+}denote the set of all non-negative integers, \mathbb{R}_{+}be the set of all nonnegative real numbers, and $[a: b]:=\{a, a+1, \cdots, b-1, b\}$ for $a, b \in \mathbb{Z}$ with $a \leq b$. We also write $[n]:=[1: n]$ for $n \in \mathbb{N}$. Moreover, \biguplus denotes the disjoint union, and given a set A and $k \in \mathbb{Z}_{+},\binom{A}{k}:=\{B \subseteq A:|B|=k\}$. Also, we use the symbol \mathbb{S} instead of S to denote the underlying state space of stochastic processes.

We assume throughout this homework that the underlying state space \mathbb{S} is countable and it is equipped with the discrete σ-field $2^{\mathbb{S}}$ on \mathbb{S}. Since $\left(\mathbb{S}, 2^{\mathbb{S}}\right)$ is a nice measurable space, it admits the canonical construction in Section 5.2 in [1] of the probability measure \mathbb{P}_{μ} on the sequence space $\left(\Omega_{0}, \mathcal{F}_{\infty}\right)$ so that the sequence of coordinate maps $\left\{X_{n}(\omega):=\omega_{n}\right\}_{n=0}^{\infty}$ is a homogeneous Markov chain with initial distribution μ and transition probability $p(\cdot, \cdot): \mathbb{S} \times 2^{\mathbb{S}} \rightarrow[0,1]$. We remark that it is conventional to write $p(x, y):=p(x,\{y\})$ for $x, y \in \mathbb{S}$.

Problem 1 (Exercise 5.5.2. in [1]).
Recall that for any given recurrent state $x \in \mathbb{S}$ and any state $y \in \mathbb{S} \backslash\{x\}$,

$$
\begin{align*}
\mu_{x}(y) & :=\mathbb{E}_{x}\left[\sum_{n=0}^{T_{x}-1} \mathbb{1}_{\left\{X_{n}=y\right\}}\right] \\
& \stackrel{(\mathrm{a})}{=} \mathbb{E}_{x}\left[\left(\sum_{n=0}^{T_{x}-1} \mathbb{1}_{\left\{X_{n}=y\right\}}\right) \mathbb{1}_{\left\{T_{x}<+\infty\right\}}\right] \\
& \stackrel{(\mathrm{b})}{=} \mathbb{E}_{x}\left[\left(\sum_{k=0}^{\infty} \mathbb{1}_{\left\{\sum_{n=0}^{T_{x}-1} \mathbb{1}_{\left\{X_{n}=y\right\}}=k\right\}}\right) \mathbb{1}_{\left\{T_{x}<+\infty\right\}}\right] \tag{1}\\
& \stackrel{(\mathrm{c})}{=} \sum_{k=1}^{\infty} k \cdot \mathbb{P}_{x}\left\{\sum_{n=0}^{T_{x}-1} \mathbb{1}_{\left\{X_{n}=y\right\}}=k \text { and } T_{x}<+\infty\right\} \\
& \stackrel{(\mathrm{d})}{=} \sum_{k=1}^{\infty} k \cdot \mathbb{P}_{x}\left\{\sum_{n=0}^{T_{x}-1} \mathbb{1}_{\left\{X_{n}=y\right\}}=k\right\},
\end{align*}
$$

where the above steps (a)-(c) holds since
(a) since the state x is recurrent, $\mathbb{P}_{x}\left\{T_{x}<+\infty\right\}=1$;
(b) if $T_{x}<+\infty$, then $\sum_{n=0}^{T_{x}-1} \mathbb{1}_{\left\{X_{n}=y\right\}}<+\infty$;
(c) the Fubini-Tonelli's theorem, since the summands are non-negative;
(d) the same reason as the step (a).

Here, $T_{x}:=\inf \left\{n \geq 1: X_{n}=x\right\}$ denotes the first hitting time to state $x \in \mathbb{S}$.
Claim 1. For every $k \in \mathbb{N}$, we have

$$
\begin{equation*}
\mathbb{P}_{x}\left\{\sum_{n=0}^{T_{x}-1} \mathbb{1}_{\left\{X_{n}=y\right\}}=k\right\}=w_{x y}\left(1-w_{y x}\right)^{k-1} w_{y x} . \tag{2}
\end{equation*}
$$

Proof of Claim 1.
Let $Y_{k}:=\mathbb{1}_{\left\{\sum_{n=0}^{T_{x}-1} \mathbb{1}_{\left\{X_{n}=y\right\}}=k\right\}}$ for $k \in \mathbb{N}$. It's clear that each Y_{k} is a bounded measurable function defined on the sequence space $\left(\Omega_{0}, \mathcal{F}_{\infty}\right)$. If $T_{y}(\omega)<T_{x}(\omega)$, then

$$
\begin{align*}
\left(Y_{k} \circ \theta_{T_{y}}\right)(\omega) & =\mathbb{1}_{\left\{\sum_{n=0}^{T_{x}-1} \mathbb{1}_{\left\{X_{n}=y\right\}}=k\right\}}\left(\theta_{T_{y}}(\omega)\right) \\
& =\left\{\begin{array}{ll}
1 & \text { if } \sum_{n=0}^{T_{x}\left(\theta_{T_{y}}(\omega)\right)-1} \\
0 & \text { otherwise }
\end{array} \mathbb{1}_{\left\{X_{n}\left(\theta_{T_{y}}(\omega)\right)=1\right\}}=k ;\right. \\
& \stackrel{(\mathrm{e})}{=} \begin{cases}1 & \text { if } \sum_{n=0}^{T_{x}(\omega)-T_{y}(\omega)-1} \mathbb{1}_{\left\{\omega_{n+T_{y}(\omega)}=y\right\}}=k ; \\
0 & \text { otherwise }\end{cases} \tag{3}\\
& \stackrel{(\mathrm{f})}{=} \begin{cases}1 & \text { if } \sum_{n=1}^{T_{x}(\omega)-1} \mathbb{1}_{\left\{\omega_{n}=y\right\}}=k ; \\
0 & \text { otherwise }\end{cases} \\
& =\mathbb{1}_{\left\{\sum_{n=1}^{T_{x}(\omega)-1} \mathbb{1}_{\left\{X_{n}=y\right\}}=k\right\}}
\end{align*}
$$

where the step (e) holds since when $T_{y}(\omega)<T_{x}(\omega)$,

$$
\begin{aligned}
T_{x}\left(\theta_{T_{y}}(\omega)\right) & =\inf \left\{n \geq 1: X_{n}\left(\theta_{T_{y}}(\omega)\right)=x\right\} \\
& =\inf \left\{n \geq 1: \omega_{n+T_{y}}(\omega)=x\right\} \\
& =\inf \left\{n \geq T_{y}(\omega)+1: \omega_{n}=x\right\}-T_{y}(\omega) \\
& \stackrel{(\mathrm{g})}{=} \inf \left\{n \geq 1: X_{n}=x\right\}-T_{y}(\omega) \\
& =T_{x}(\omega)-T_{y}(\omega),
\end{aligned}
$$

where the step (g) follows from the fact that $T_{y}(\omega)<T_{x}(\omega)$ implies that there is no visits to state x from time 1 to $T_{y}(\omega)$, and the step (f) is due to the fact that there is no visits to state y from time 1 to $T_{y}(\omega)-1$.

Thus,

$$
\begin{align*}
\mathbb{P}_{x}\left\{\sum_{n=0}^{T_{x}(\omega)-1} \mathbb{1}_{\left\{X_{n}=y\right\}}=k\right\} & \stackrel{(\mathrm{h})}{=} \mathbb{P}_{x}\left\{\sum_{n=1}^{T_{x}(\omega)-1} \mathbb{1}_{\left\{X_{n}=y\right\}}=k\right\} \\
& =\mathbb{E}_{x}\left[\mathbb{1}_{\left\{\sum_{n=1}^{T_{x}(\omega)-1} \mathbb{1}_{\left\{X_{n}=y\right\}}=k\right\}}\right] \\
& \stackrel{(\mathrm{i})}{=} \mathbb{E}_{x}\left[\mathbb{1}_{\left\{\sum_{n=1}^{T_{x}(\omega)-1} \mathbb{1}_{\left\{X_{n}=y\right\}}=k\right\}} \cdot \mathbb{1}_{\left\{T_{y}<T_{x}\right\}}\right] \\
& \stackrel{(\mathrm{j})}{=} \mathbb{E}_{x}\left[\left(Y_{k} \circ \theta_{T_{y}}\right) \cdot \mathbb{1}_{\left\{T_{y}<T_{x}\right\}}\right] \\
& =\mathbb{E}_{x}\left[\mathbb{E}_{x}\left[\left(Y_{k} \circ \theta_{T_{y}}\right) \cdot \mathbb{1}_{\left\{T_{y}<T_{x}\right\}} \mid \mathcal{F}_{T_{y}}\right]\right] \tag{4}\\
& \stackrel{(\mathrm{k})}{=} \mathbb{E}_{x}\left[\mathbb{E}_{x}\left[Y_{k} \circ \theta_{T_{y}} \mid \mathcal{F}_{T_{y}}\right] \mathbb{1}_{\left\{T_{y}<T_{x}\right\}}\right] \\
& \stackrel{(\mathrm{l})}{=} \mathbb{E}_{x}\left[\mathbb{E}_{X_{T_{y}}}\left[Y_{k}\right] \mathbb{1}_{\left\{T_{y}<T_{x}\right\}}\right] \\
& \stackrel{(\mathrm{m})}{=} \mathbb{E}_{x}\left[\mathbb{E}_{y}\left[Y_{k}\right] \mathbb{1}_{\left\{T_{y}<T_{x}\right\}}\right] \\
& =\mathbb{E}_{y}\left[Y_{k}\right] \mathbb{P}_{x}\left\{T_{y}<T_{x}\right\} \\
& =\mathbb{P}_{y}\left\{\sum_{n=0}^{T_{x}(\omega)-1} \mathbb{1}_{\left\{X_{n}=y\right\}}=k\right\} \cdot w_{x y},
\end{align*}
$$

where the above steps (h)-(m) can be justified as follows:
(h) $x \neq y$;
(i) $\left\{\sum_{n=1}^{T_{x}(\omega)-1} \mathbb{1}_{\left\{X_{n}=y\right\}}=k\right\} \subseteq\left\{T_{y}<T_{x}\right\}$;
(j) the equality (3);
(k) $\left\{T_{y}<T_{x}\right\} \in \mathcal{F}_{T_{y}}$, where $\left\{\mathcal{F}_{n}:=\sigma\left(X_{0}, X_{1}, \cdots, X_{n}\right)\right\}_{n=0}^{\infty}$ is the canonical filtration of the Markov chain $\left\{X_{n}\right\}_{n=0}^{\infty}$, since

$$
\left\{T_{y}<T_{x}\right\} \cap\left\{T_{y}=n\right\}=\left\{T_{x}>n\right\} \cap\left\{T_{y}=n\right\}=\left(\Omega_{0} \backslash\left\{T_{x} \leq n\right\}\right) \cap\left\{T_{y}=n\right\} \in \mathcal{F}_{n}
$$

for every $n \in \mathbb{Z}_{+}$;
(1) the strong Markov property (Theorem 5.2.5 in [1]);
(m) if $T_{y}<T_{x} \leq+\infty$, then $X_{T_{y}}=y$.

Now, we turn our attention to the probability $\mathbb{E}_{y}\left[Y_{k}\right]=\mathbb{P}_{y}\left\{\sum_{n=0}^{T_{x}(\omega)-1} \mathbb{1}_{\left\{X_{n}=y\right\}}=k\right\}$. If $k=1$, we find that

$$
\begin{align*}
\mathbb{E}_{y}\left[Y_{1}\right] & =\mathbb{P}_{y}\left\{\sum_{n=0}^{T_{x}(\omega)-1} \mathbb{1}_{\left\{X_{n}=y\right\}}=1\right\} \tag{5}\\
& =\mathbb{P}_{y}\left\{X_{n} \in \mathbb{S} \backslash\{y\} \text { for } 1 \leq n \leq T_{x}-1\right\} \\
& =\mathbb{P}_{y}\left\{T_{x}<T_{y}\right\}=w_{y x}
\end{align*}
$$

Hereafter, we assume that $k \geq 2$. Then, we obtain

$$
\begin{align*}
\mathbb{E}_{y}\left[Y_{k}\right] & =\mathbb{P}_{y}\left\{\sum_{n=1}^{T_{x}(\omega)-1} \mathbb{1}_{\left\{X_{n}=y\right\}}=k-1\right\} \\
& =\mathbb{E}_{y}\left[\mathbb{1}_{\left\{\sum_{n=1}^{T_{x}(\omega)-1} \mathbb{1}_{\left\{X_{n}=y\right\}}=k-1\right\}}\right] \\
& \stackrel{(\mathrm{n})}{=} \mathbb{E}_{y}\left[\mathbb{1}_{\left\{\sum_{n=1}^{T_{x}(\omega)-1} \mathbb{1}_{\left\{X_{n}=y\right\}}=k-1\right\}} \cdot \mathbb{1}_{\left\{T_{y}<T_{x}\right\}}\right] \\
& \stackrel{(\mathrm{o})}{=} \mathbb{E}_{y}\left[\left(Y_{k-1} \circ \theta_{T_{y}}\right) \cdot \mathbb{1}_{\left\{T_{y}<T_{x}\right\}}\right] \\
& =\mathbb{E}_{y}\left[\mathbb{E}_{y}\left[\left(Y_{k-1} \circ \theta_{T_{y}}\right) \cdot \mathbb{1}_{\left\{T_{y}<T_{x}\right\}} \mid \mathcal{F}_{T_{y}}\right]\right] \tag{6}\\
& \stackrel{(\mathrm{p})}{=} \mathbb{E}_{y}\left[\mathbb{E}_{y}\left[Y_{k-1} \circ \theta_{T_{y}} \mid \mathcal{F}_{T_{y}}\right] \mathbb{1}_{\left\{T_{y}<T_{x}\right\}}\right] \\
& \stackrel{(\mathrm{q})}{=} \mathbb{E}_{y}\left[\mathbb{E}_{X_{T_{y}}}\left[Y_{k-1}\right] \mathbb{1}_{\left\{T_{y}<T_{x}\right\}}\right] \\
& \stackrel{(\mathrm{r})}{=} \mathbb{E}_{y}\left[\mathbb{E}_{y}\left[Y_{k-1}\right] \mathbb{1}_{\left\{T_{y}<T_{x}\right\}}\right] \\
& =\mathbb{E}_{y}\left[Y_{k-1}\right] \underbrace{\mathbb{P}_{1-\mathbb{P}_{y}\left\{T_{x}<T_{y}\right\}}}_{P_{y}\left\{T_{y}<T_{x}\right\}} \\
& =\left(1-w_{y x}\right) \mathbb{E}_{y}\left[Y_{k-1}\right],
\end{align*}
$$

where the above steps (n)-(r) can be validated as follows:
(n) for $k \geq 2,\left\{\sum_{n=1}^{T_{x}(\omega)-1} \mathbb{1}_{\left\{X_{n}=y\right\}}=k-1\right\} \subseteq\left\{T_{y}<T_{x}\right\}$;
(o) the equation (3);
(p) the same reason as the step (k);
(q) the strong Markov property (Theorem 5.2.5 in [1]);
(r) if $T_{y}<T_{x} \leq+\infty$, then $X_{T_{y}}=y$.

So, we may inductively deduce that for every $k \geq 2$,

$$
\begin{equation*}
\mathbb{E}_{y}\left[Y_{k}\right]=\left(1-w_{y x}\right)^{k-1} \mathbb{E}_{y}\left[Y_{1}\right] \stackrel{(\mathrm{s})}{=}\left(1-w_{y x}\right)^{k-1} w_{y x}, \tag{7}
\end{equation*}
$$

where the step (s) makes use of the equation (5). Putting (7) into the equation (4) yields

$$
\mathbb{P}_{x}\left\{\sum_{n=0}^{T_{x}(\omega)-1} \mathbb{1}_{\left\{X_{n}=y\right\}}=k\right\}=w_{x y} \mathbb{E}_{y}\left[Y_{k}\right]=w_{x y}\left(1-w_{y x}\right)^{k-1} w_{y x}
$$

for all $k \in \mathbb{N}$.

Hence, for any state $y \in \mathbb{S} \backslash\{x\}$,

$$
\begin{aligned}
\mu_{x}(y) & =\sum_{k=1}^{\infty} k \cdot \mathbb{P}_{x}\left\{\sum_{n=0}^{T_{x}-1} \mathbb{1}_{\left\{X_{n}=y\right\}}=k\right\} \\
& \stackrel{(\mathrm{u})}{=} \sum_{k=1}^{\infty} k w_{x y}\left(1-w_{y x}\right)^{k-1} w_{y x} \\
& =w_{x y} w_{y x} \cdot \frac{1}{\left\{1-\left(1-w_{y x}\right)\right\}^{2}} \\
& =\frac{w_{x y}}{w_{y x}}
\end{aligned}
$$

where the step (r) is due to Claim 1. For the case $y=x$, it's clear that $\mu_{x}(x)=\frac{w_{x x}}{w_{x x}}=1$ and this completes the proof.

Problem 2 (Exercise 5.5.3. in [1]).
Fix any states $x, y \in \mathbb{S}$, and let $\nu_{x y}: \mathbb{S} \rightarrow[0,+\infty)$ be defined by

$$
\nu_{x y}(z):=\mu_{x}(y) \mu_{y}(z), \forall z \in \mathbb{S} .
$$

Note that $\nu_{x y}(z)<+\infty$ for all $z \in \mathbb{S}$ due to the technical note in the page 303 of [1]. Then for any $w \in \mathbb{S}$, we have

$$
\begin{align*}
\sum_{z \in \mathbb{S}} \nu_{x y}(z) p(z, w) & =\mu_{x}(y) \sum_{z \in \mathbb{S}} \mu_{y}(z) p(z, w) \\
& \stackrel{(\text { a) }}{=} \mu_{x}(y) \mu_{y}(w) \tag{8}\\
& =\nu_{x y}(w)
\end{align*}
$$

where the step (a) holds since the state $y \in \mathbb{S}$ is recurrent, $\mu_{y}(\cdot): \mathbb{S} \rightarrow[0,+\infty)$ is a stationary measure for the transition probability $p(\cdot, \cdot): \mathbb{S} \times \mathbb{S} \rightarrow[0,1]$ by Theorem 5.5 .7 in [1]. Therefore, $\nu_{x y}(\cdot): \mathbb{S} \rightarrow[0,+\infty)$ is a stationary measure for $p(\cdot, \cdot)$. On the other hand, $\mu_{x}(\cdot): \mathbb{S} \rightarrow[0,+\infty)$ defines a stationary measure for $p(\cdot, \cdot)$ by Theorem 5.5.7 in [1]. So, Theorem 5.5.9 in [1] implies

$$
\begin{equation*}
\nu_{x y}(\cdot)=c_{x y} \cdot \mu_{x}(\cdot) \tag{9}
\end{equation*}
$$

for some constant $c_{x y} \geq 0$. In particular, we obtain

$$
\begin{equation*}
\mu_{x}(y)=\mu_{x}(y) \mu_{y}(y)=\nu_{x y}(y)=c_{x y} \cdot \mu_{x}(y) \tag{10}
\end{equation*}
$$

Lemma 1. If $p(\cdot, \cdot): \mathbb{S} \times \mathbb{S} \rightarrow[0,1]$ is irreducible and $\mu(\cdot): \mathbb{S} \rightarrow[0,+\infty]$ is a stationary measure for the transition probability $p(\cdot, \cdot)$ such that $\mu(a)>0$ for some $a \in \mathbb{S}$, then $\mu(x)>0$ for all $x \in \mathbb{S}$.

Proof of Lemma 1.
Assume on the contrary that $\mu(x)=0$ for some $x \in \mathbb{S} \backslash\{a\}$. Due to the irreducibilty of $p(\cdot, \cdot)$, there is an $N(a, x) \in \mathbb{N}$ such that

$$
p^{N(a, x)}(a, x)=\mathbb{P}_{a}\left\{X_{N(a, x)}=x\right\}>0 .
$$

Since $\mu(\cdot)$ is a stationary measure for $p(\cdot, \cdot)$, we obtain

$$
\begin{equation*}
0=\mu(x)=\sum_{y \in \mathbb{S}} \mu(y) p^{N(a, x)}(y, x) \geq \mu(a) p^{N(a, x)}(a, x), \tag{11}
\end{equation*}
$$

and the last term of the inequality (11), thereby it yields a contradiction! Therefore, $\mu(x)>0$ for all $x \in \mathbb{S}$.

Since $\mu_{x}(x)=1>0$, Lemma 1 implies that $\mu_{x}(z)>0$ for all $z \in \mathbb{S}$. So, we can divide the equation (10) by $\mu_{x}(y)$ and thus we arrive at $c_{x y}=1$. Hence,

$$
\mu_{x}(z)=\nu_{x y}(z)=\mu_{x}(y) \mu_{y}(z)
$$

for all $z \in \mathbb{S}$.
Problem 3 (Exercise 5.5.4. in [1]).
Fix any state $y \in \mathbb{S}$. If $x=y$, then it's clear from the definition of positive recurrence that $\mathbb{E}_{y}\left[T_{y}\right]<+\infty$. So, we may assume that $x \in \mathbb{S} \backslash\{y\}$.

Claim 2. $\mathbb{E}_{x}\left[T_{y}\right] \cdot \mathbb{P}_{y}\left\{T_{x}<T_{y}\right\} \leq \mathbb{E}_{y}\left[T_{y}\right]$.
Proof of Claim 2.
To begin with, we note that $T_{y} \in L^{1}\left(\Omega_{0}, \mathcal{F}_{\infty}, \mathbb{P}_{y}\right)$ due to the positive recurrence of state y. One can see that if $T_{x}(\omega)<T_{y}(\omega)$, then

$$
\begin{aligned}
\left(T_{y} \circ \theta_{T_{x}}\right)(\omega) & =\inf \left\{n \geq 1: X_{n}\left(\theta_{T_{x}}(\omega)\right)=y\right\} \\
& =\inf \left\{n \geq T_{x}(\omega)+1: X_{n}(\omega)=y\right\}-T_{x}(\omega) \\
& \stackrel{(a)}{=} \inf \left\{n \geq 1: X_{n}(\omega)=y\right\}-T_{x}(\omega) \\
& =T_{y}(\omega)-T_{x}(\omega),
\end{aligned}
$$

where the step (a) holds since if $T_{x}(\omega)<T_{y}(\omega)$, then $\omega_{n}=X_{n}(\omega) \in \mathbb{S} \backslash\{y\}$ for all $1 \leq n \leq T_{x}(\omega)$. In other words,

$$
\begin{equation*}
\left(T_{y}-T_{x}\right) \cdot \mathbb{1}_{\left\{T_{x}<T_{y}\right\}}=\left(T_{y} \circ \theta_{T_{x}}\right) \cdot \mathbb{1}_{\left\{T_{x}<T_{y}\right\}} \tag{12}
\end{equation*}
$$

on Ω_{0}. Hence, the following holds:

$$
\begin{aligned}
\mathbb{E}_{y}\left[T_{y}\right] & \geq \mathbb{E}_{y}\left[\left(T_{y}-T_{x}\right) \cdot \mathbb{1}_{\left\{T_{x}<T_{y}\right\}}\right] \\
& \stackrel{(\mathrm{b})}{=} \mathbb{E}_{y}\left[\left(T_{y} \circ \theta_{T_{x}}\right) \cdot \mathbb{1}_{\left\{T_{x}<T_{y}\right\}}\right] \\
& =\mathbb{E}_{y}\left[\mathbb{E}_{y}\left[\left(T_{y} \circ \theta_{T_{x}}\right) \cdot \mathbb{1}_{\left\{T_{x}<T_{y}\right\}} \mid \mathcal{F}_{T_{x}}\right]\right] \\
& \stackrel{(\mathrm{c})}{=} \mathbb{E}_{y}\left[\mathbb{E}_{y}\left[T_{y} \circ \theta_{T_{x}} \mid \mathcal{F}_{T_{x}}\right] \mathbb{1}_{\left\{T_{x}<T_{y}\right\}}\right] \\
& \stackrel{(\mathrm{d})}{=} \mathbb{E}_{y}\left[\mathbb{E}_{X_{T_{x}}}\left[T_{y}\right] \mathbb{1}_{\left\{T_{x}<T_{y}\right\}}\right] \\
& \stackrel{(\mathrm{e})}{=} \mathbb{E}_{y}\left[\mathbb{E}_{x}\left[T_{y}\right] \mathbb{1}_{\left\{T_{x}<T_{y}\right\}}\right] \\
& =\mathbb{E}_{x}\left[T_{y}\right] \cdot \mathbb{P}_{y}\left\{T_{x}<T_{y}\right\},
\end{aligned}
$$

where the above steps (b)-(e) can be justified as follows:
(b) the equality (12);
(c) $\left\{T_{x}<T_{y}\right\} \in \mathcal{F}_{T_{x}}$, since

$$
\left\{T_{x}<T_{y}\right\} \cap\left\{T_{x}=n\right\}=\left\{T_{y}>n\right\} \cap\left\{T_{x}=n\right\}=\left(\Omega_{0} \backslash\left\{T_{y} \leq n\right\}\right) \cap\left\{T_{x}=n\right\} \in \mathcal{F}_{n}
$$

for every $n \in \mathbb{Z}_{+}$, where $\left\{\mathcal{F}_{n}:=\sigma\left(X_{0}, X_{1}, \cdots, X_{n}\right)\right\}_{n=0}^{\infty}$ denotes the canonical filtration of the Markov chain $\left\{X_{n}\right\}_{n=0}^{\infty}$;
(d) the strong Markov property (Theorem 5.2.5 in [1]);
(e) if $T_{x}<T_{y} \leq+\infty$, then $X_{T_{x}}=x$,
and this finishes the proof of Claim 2.
Claim 3. $\mathbb{P}_{y}\left\{T_{x}<T_{y}\right\}>0$.
Proof of Claim 3.
Due to the irreducibility of $p(\cdot, \cdot)$,

$$
K(y, x):=\inf \left\{n \in \mathbb{N}: p^{n}(y, x)=\mathbb{P}_{y}\left\{X_{n}=x\right\}>0\right\}<+\infty .
$$

Since $\left\{T_{x}=K(y, x)\right\} \subseteq\left\{X_{K(y, x)}=x\right\}$, it's clear that $\mathbb{P}_{y}\left\{T_{x}=K(y, x)\right\} \leq \mathbb{P}_{y}\left\{X_{K(y, x)}=x\right\}$. On the other hand,

$$
\begin{aligned}
\mathbb{P}_{y}\left\{X_{K(y, x)}=x\right\} & =\mathbb{P}_{y}\left\{X_{K(y, x)}=x, T_{x} \leq K(y, x)\right\} \\
& =\sum_{l=1}^{K(y, x)-1} \mathbb{P}_{y}\left\{X_{K(y, x)}=x, T_{x}=l\right\}+\mathbb{P}_{y}\left\{X_{K(y, x)}=x, T_{x}=K(y, x)\right\} \\
& \stackrel{(\mathrm{f})}{\leq} \sum_{l=1}^{K(y, x)-1} \mathbb{P}_{y}\left\{X_{l}=x, X_{K(y, x)}=x\right\}+\mathbb{P}_{y}\left\{T_{x}=K(y, x)\right\} \\
& \stackrel{(\mathrm{g})}{=} \sum_{l=1}^{K(y, x)-1} \underbrace{p^{l}(y, x)}_{=0} p^{K(y, x)-l}(x, x)+\mathbb{P}_{y}\left\{T_{x}=K(y, x)\right\} \\
& \stackrel{(\mathrm{h})}{=} \mathbb{P}_{y}\left\{T_{x}=K(y, x)\right\},
\end{aligned}
$$

where the above steps (f)-(h) can be validated as follows:
(f) $\left\{T_{x}=l\right\} \subseteq\left\{X_{l}=x\right\}$ for $1 \leq l \leq K(y, x)$;
(g) a consequence of Chapman-Kolmogorov's equation (Theorem 5.2.4 in [1]);
(h) due to the minimality of $K(y, x)$ in the set $\left\{n \in \mathbb{N}: p^{n}(y, x)=\mathbb{P}_{y}\left\{X_{n}=x\right\}>0\right\}$.

Thus, we obtain $\mathbb{P}_{y}\left\{T_{x}=K(y, x)\right\}=\mathbb{P}_{y}\left\{X_{K(y, x)}=x\right\}$. Also one has for every $1 \leq l \leq K(y, x)-1$,

$$
\begin{align*}
\mathbb{P}_{y}\left\{T_{x}=K(y, x), T_{y}<T_{x}\right\} & =\sum_{l=1}^{K(y, x)-1} \mathbb{P}_{y}\left\{T_{x}=K(y, x), T_{y}=l\right\} \\
& \leq \sum_{l=1}^{K(y, x)-1} \mathbb{P}_{y}\left\{X_{l}=y, X_{K(y, x)}=x\right\} \tag{13}\\
& \stackrel{(\mathrm{i})}{K} \sum_{l=1}^{K(y, x)-1} p^{l}(y, y) \underbrace{p^{K(y, x)-l}(y, x)}_{=0} \\
& \stackrel{(\mathrm{j})}{=} 0,
\end{align*}
$$

where the step (i) is a consequence of Chapman-Kolmogorov's equation (Theorem 5.2.4 in [1]), and the step (j) follows from the minimality of $K(y, x)$ in the set $\left\{n \in \mathbb{N}: p^{n}(y, x)=\mathbb{P}_{y}\left\{X_{n}=x\right\}>0\right\}$. Hence,

$$
\begin{aligned}
\mathbb{P}_{y}\left\{T_{x}<T_{y}\right\} & \geq \mathbb{P}_{y}\left\{T_{x}<T_{y}, T_{x}=K(y, x)\right\} \\
& =\mathbb{P}_{y}\left\{T_{x}=K(y, x)\right\}-\underbrace{\mathbb{P}_{y}\left\{T_{y}<T_{x}, T_{x}=K(y, x)\right\}}_{=0} \\
& \stackrel{(\mathrm{k})}{=} p^{K(y, x)}(y, x)>0,
\end{aligned}
$$

where the step (k) makes use of the fact $\mathbb{P}_{y}\left\{T_{x}=K(y, x)\right\}=\mathbb{P}_{y}\left\{X_{K(y, x)}=x\right\}$ together with (13), and this establishes our desired claim.

Combining Claim 2 together with Claim 3 gives

$$
\mathbb{E}_{x}\left[T_{y}\right] \leq \frac{\mathbb{E}_{y}\left[T_{y}\right]}{\mathbb{P}_{y}\left\{T_{x}<T_{y}\right\}} \stackrel{(1)}{<}+\infty,
$$

where the step (l) is owing to the positive recurrence of the state $y \in \mathbb{S}$, and this completes the solution to the problem.

Problem 4 (Exercise 5.5.5. in [1]).
Assume that $p(\cdot, \cdot): \mathbb{S} \times \mathbb{S} \rightarrow[0,1]$ is irreducible and has a stationary measure $\mu(\cdot): \mathbb{S} \rightarrow[0,+\infty]$ such that $\mu \not \equiv+\infty$ on \mathbb{S} and $\sum_{x \in \mathbb{S}} \mu(x)=+\infty$.

Claim 4. $\mu(x)<+\infty$ for all $x \in \mathbb{S}$.
Proof of Claim 4.
Assume on the contrary that $\mu(y)=+\infty$ for some $y \in \mathbb{S}$. Due to the irreducibility of $p(\cdot, \cdot)$, for every $x \in \mathbb{S} \backslash\{y\}$, there is a $K(y, x) \in \mathbb{N}$ such that

$$
p^{K(y, x)}(y, x)=\mathbb{P}_{y}\left\{X_{K(y, x)}=x\right\}>0 .
$$

Since $\mu(\cdot): \mathbb{S} \rightarrow[0,+\infty]$ is a stationary measure for $p(\cdot, \cdot)$, we have

$$
\mu(x)=\sum_{z \in \mathbb{S}} \mu(z) p^{K(y, x)}(z, x) \geq \mu(y) p^{K(y, x)}(y, x)=+\infty,
$$

which implies $\mu \equiv+\infty$ on \mathbb{S}. This contradicts the assumption that $\mu \not \equiv+\infty$ on \mathbb{S}, and finishes the proof.

Now, let's prove that $p(\cdot, \cdot)$ is not positive recurrent. Suppose not. Then in particular, $p(\cdot, \cdot)$ is recurrent and so Theorem 5.5.9 in [1] implies that for each $a \in \mathbb{S}$,

$$
\begin{equation*}
\mu(\cdot)=c_{a} \mu_{a}(\cdot) \tag{14}
\end{equation*}
$$

on \mathbb{S}, for some constant $c_{a} \in(0,+\infty)$. Thus, one can see that

$$
\begin{aligned}
+\infty & =\sum_{x \in \mathbb{S}} \mu(x)=c_{a} \sum_{x \in \mathbb{S}} \mu_{a}(x) \\
& =c_{a} \sum_{x \in \mathbb{S}} \mathbb{E}_{a}\left[\sum_{n=0}^{T_{a}-1} \mathbb{1}_{\left\{X_{n}=x\right\}}\right] \\
& =c_{a} \sum_{x \in \mathbb{S}} \mathbb{E}_{a}\left[\sum_{n=1}^{T_{a}} \mathbb{1}_{\left\{X_{n}=x\right\}}\right] \\
& =c_{a} \sum_{x \in \mathbb{S}} \mathbb{E}_{a}\left[\sum_{n=1}^{\infty} \mathbb{1}_{\left\{X_{n}=x\right\}} \cdot \mathbb{1}_{\left\{n \leq T_{a}\right\}}\right] \\
& \stackrel{(\text { a) }}{=} c_{a} \sum_{x \in \mathbb{S}}\left[\sum_{n=1}^{\infty} \mathbb{P}_{a}\left\{X_{n}=x, n \leq T_{a}\right\}\right] \\
& \stackrel{(\mathrm{b})}{=} c_{a} \sum_{n=1}^{\infty}\left[\sum_{x \in \mathbb{S}} \mathbb{P}_{a}\left\{X_{n}=x, n \leq T_{a}\right\}\right] \\
& =c_{a} \sum_{n=1}^{\infty} \mathbb{P}_{a}\left\{T_{a} \geq n\right\} \\
& =c_{a} \sum_{n=1}^{\infty} \mathbb{E}_{a}\left[\mathbb{1}_{\left\{n \leq T_{a}\right\}}\right] \\
& \stackrel{(\mathrm{c})}{=} c_{a} \mathbb{E}_{a}\left[\sum_{n=1}^{\infty} \mathbb{1}_{\left\{n \leq T_{a}\right\}}\right] \\
& =c_{a} \mathbb{E}_{a}\left[T_{a}\right] \stackrel{(\mathrm{d})}{<}+\infty,
\end{aligned}
$$

which gives a contradiction. Here, the above steps (a)-(d) holds since:
(a) we can change the order of expectation and summation by the monotone convergence theorem;
(b) the Fubini-Tonelli's theorem;
(c) the same reason as the step (a);
(d) we have assumed that $p(\cdot, \cdot)$ is positive recurrent.

Hence, we can conclude that $p(\cdot, \cdot)$ is not positive recurrent.
Problem 5 (Exercise 5.5.9. in [1]).
Suppose that $\left\{X_{n}\right\}_{n=0}^{\infty}$ is an \mathbb{S}-valued homogeneous Markov chain with transition probability $p(\cdot, \cdot)$: $\mathbb{S} \times \mathbb{S} \rightarrow[0,1]$ such that $\mathbb{E}_{x}\left[X_{1}\right] \leq x-\epsilon$ for all $x>K$, where $\mathbb{S} \subseteq[0,+\infty)$ is a countable state space and $\epsilon>0$. We may assume that the given Markov chain is the sequence of coordinate maps $\left\{X_{n}(\omega):=\omega_{n}\right\}_{n=0}^{\infty}$ defined on the sequence space $\left(\Omega_{0}, \mathcal{F}_{\infty}\right)$, where the canonical construction of the probability measure \mathbb{P}_{μ} on $\left(\Omega_{0}, \mathcal{F}_{\infty}\right)$ in Section 5.2 of [1] makes it an \mathbb{S}-valued homogeneous Markov chain with initial distribution μ and transition probability $p(\cdot, \cdot)$. Now, we will prove the following result:

Claim 5. $\left\{Y_{n \wedge \tau}\right\}_{n=0}^{\infty}$ is a positive supermartingale with respect to the canonical filtration $\left\{\mathcal{F}_{n}:=\sigma\left(X_{0}, X_{1}, \cdots, X_{n}\right)\right\}_{n=0}^{\infty}$ on the canonical probability space $\left(\Omega_{0}, \mathcal{F}_{\infty}, \mathbb{P}_{\mu}\right)$, where $\mu(\cdot)$ is a probability measure on $\left(\mathbb{S}, 2^{\mathbb{S}}\right)$ with finite first moment, i.e., $\sum_{x \in \mathbb{S}} x \mu(x)<+\infty$.

Proof of Claim 5.
We first prove the \mathbb{P}_{μ}-integrability of $Y_{n \wedge \tau}$. From the inequality

$$
\begin{aligned}
Y_{n \wedge \tau} & =Y_{n} \cdot \mathbb{1}_{\{\tau \geq n\}}+\sum_{k=0}^{n-1} Y_{k} \cdot \mathbb{1}_{\{\tau=k\}} \\
& =Y_{n} \cdot \mathbb{1}_{\{\tau \geq n\}}+\sum_{k=0}^{n-1}\left(X_{k}+k \epsilon\right) \mathbb{1}_{\{\tau=k\}} \\
& \leq Y_{n} \cdot \mathbb{1}_{\{\tau \geq n\}}+\sum_{k=0}^{n-1}(K+k \epsilon) \mathbb{1}_{\{\tau=k\}} \\
& \leq Y_{n} \cdot \mathbb{1}_{\{\tau \geq n\}}+(K+n \epsilon),
\end{aligned}
$$

where the step (a) holds since if $\tau=k$, then $X_{k} \leq K$, it suffices to show that $Y_{n} \cdot \mathbb{1}_{\{\tau \geq n\}} \in L^{1}\left(\Omega_{0}, \mathcal{F}_{\infty}, \mathbb{P}_{\mu}\right)$. Choose any $A_{0}, A_{1}, \cdots, A_{n-1} \subseteq \mathbb{S}$. Then, we have

$$
\begin{align*}
& \mathbb{E}_{\mu}\left[\left(Y_{n} \cdot \mathbb{1}_{\{\tau \geq n\}}\right) \mathbb{1}_{\left\{X_{0} \in A_{0}, X_{1} \in A_{1}, \cdots, X_{n-1} \in A_{n-1}\right\}}\right] \\
& \stackrel{(\mathrm{b})}{=} \mathbb{E}_{\mu}\left[\left(X_{n}+n \epsilon\right) \prod_{j=0}^{n-1} \mathbb{1}_{A_{j} \cap(K,+\infty)}\left(X_{j}\right)\right] \\
& \stackrel{(\mathrm{c})}{=} \sum_{x_{0} \in A_{0} \cap(K,+\infty)} \mu\left(x_{0}\right)\left[\sum_{x_{1} \in A_{1} \cap(K,+\infty)} p\left(x_{0}, x_{1}\right)\right. \\
& [\sum_{x_{n-1} \in A_{n-1} \cap(K,+\infty)} p\left(x_{n-2}, x_{n-1}\right) \underbrace{\cdots]}_{\left.=\mathbb{E}_{x_{n-1}\left[X_{1}+n \epsilon\right]}^{\left[\sum_{x_{n} \in \mathbb{S}} p\left(x_{n-1}, x_{n}\right)\left(x_{n}+n \epsilon\right)\right.}\right] \cdots}]] \tag{15}\\
& \stackrel{(\mathrm{d})}{\leq} \sum_{x_{0} \in A_{0} \cap(K,+\infty)} \mu\left(x_{0}\right)\left[\sum_{x_{1} \in A_{1} \cap(K,+\infty)} p\left(x_{0}, x_{1}\right)\right. \\
& \left.\left[\cdots\left[\sum_{x_{n-1} \in A_{n-1} \cap(K,+\infty)} p\left(x_{n-2}, x_{n-1}\right)\left\{x_{n-1}+(n-1) \epsilon\right\}\right] \cdots\right]\right] \\
& \stackrel{(\mathrm{e})}{=} \mathbb{E}_{\mu}\left[\left\{X_{n-1}+(n-1) \epsilon\right\} \prod_{j=0}^{n-1} \mathbb{1}_{A_{j} \cap(K,+\infty)}\left(X_{j}\right)\right] \\
& =\mathbb{E}_{\mu}\left[\left(Y_{n-1} \cdot \mathbb{1}_{\{\tau \geq n\}}\right) \mathbb{1}_{\left\{X_{0} \in A_{0}, X_{1} \in A_{1}, \cdots, X_{n-1} \in A_{n-1}\right\}}\right] \text {, }
\end{align*}
$$

where the above steps (b)-(e) can be validated as follows:
(b) $\{\tau \geq n\}=\left\{X_{0}>K, X_{1}>K, \cdots, X_{n-1}>K\right\}$;
(c) the equation (5.2.3) in [1];
(d) since $x_{n-1}>K$, we have $\mathbb{E}_{x_{n-1}}\left[X_{1}\right] \leq x_{n-1}-\epsilon$;
(e) the same reason as the step (c).

Putting $A_{0}=A_{1}=\cdots=A_{n-1}=\mathbb{S}$ into the bound (15) yields

$$
\begin{equation*}
\mathbb{E}_{\mu}\left[Y_{n} \cdot \mathbb{1}_{\{\tau \geq n\}}\right] \leq \mathbb{E}_{\mu}\left[Y_{n-1} \cdot \mathbb{1}_{\{\tau \geq n\}}\right] \leq \mathbb{E}_{\mu}\left[Y_{n-1} \cdot \mathbb{1}_{\{\tau \geq n-1\}}\right] \tag{16}
\end{equation*}
$$

for every $n \in \mathbb{N}$. Applying the inequality (16) inductively, we may deduce that

$$
\mathbb{E}_{\mu}\left[Y_{n} \cdot \mathbb{1}_{\{\tau \geq n\}}\right] \leq \mathbb{E}_{\mu}\left[Y_{0} \cdot \mathbb{1}_{\{\tau \geq 0\}}\right]=\mathbb{E}_{\mu}\left[X_{0}\right]=\sum_{x \in \mathbb{S}} x \mu(x) \stackrel{(\mathrm{f})}{<}+\infty,
$$

where the step (f) is due to the assumption of the initial distribution $\mu(\cdot)$, thereby $Y_{n} \cdot \mathbb{1}_{\{\tau \geq n\}} \in L^{1}\left(\Omega_{0}, \mathcal{F}_{\infty}, \mathbb{P}_{\mu}\right)$. This establishes the \mathbb{P}_{μ}-integrability of $Y_{n \wedge \tau}$.

Now, put $A_{0}=\left\{x_{0}\right\}, A_{1}=\left\{x_{1}\right\}, \cdots, A_{n-1}=\left\{x_{n-1}\right\}$ for $x_{0}, x_{1}, \cdots, x_{n-1} \in \mathbb{S}$. Then, we obtain

$$
\begin{equation*}
\mathbb{E}_{\mu}\left[\left(Y_{n} \cdot \mathbb{1}_{\{\tau \geq n\}}\right) \mathbb{1}_{\left\{\left(X_{0}, X_{1}, \cdots, X_{n-1}\right)=\left(x_{0}, x_{1}, \cdots, x_{n-1}\right)\right\}}\right] \leq \mathbb{E}_{\mu}\left[\left(Y_{n-1} \cdot \mathbb{1}_{\{\tau \geq n\}}\right) \mathbb{1}_{\left\{\left(X_{0}, X_{1}, \cdots, X_{n-1}\right)=\left(x_{0}, x_{1}, \cdots, x_{n-1}\right)\right\}}\right] \tag{17}
\end{equation*}
$$

for any $\left(x_{0}, x_{1}, \cdots, x_{n-1}\right) \in \mathbb{S}^{n}$. So given any $B \in \mathcal{S}^{n}$, one has

$$
\begin{aligned}
& \mathbb{E}_{\mu}\left[\left(Y_{n} \cdot \mathbb{1}_{\{\tau \geq n\}}\right) \mathbb{1}_{\left\{\left(X_{0}, X_{1}, \cdots, X_{n-1}\right) \in B\right\}}\right] \\
&= \sum_{\left(x_{0}, x_{1}, \cdots, x_{n-1}\right) \in B} \mathbb{E}_{\mu}\left[\left(Y_{n} \cdot \mathbb{1}_{\{\tau \geq n\}}\right) \mathbb{1}_{\left\{\left(X_{0}, X_{1}, \cdots, X_{n-1}\right)=\left(x_{0}, x_{1}, \cdots, x_{n-1}\right)\right\}}\right] \\
& \stackrel{(\mathrm{g})}{\leq} \sum_{\left(x_{0}, x_{1}, \cdots, x_{n-1}\right) \in B} \mathbb{E}_{\mu}\left[\left(Y_{n-1} \cdot \mathbb{1}_{\{\tau \geq n\}}\right) \mathbb{1}_{\left\{\left(X_{0}, X_{1}, \cdots, X_{n-1}\right)=\left(x_{0}, x_{1}, \cdots, x_{n-1}\right)\right\}}\right] \\
&= \mathbb{E}_{\mu}\left[\left(Y_{n-1} \cdot \mathbb{1}_{\{\tau \geq n\}}\right) \mathbb{1}_{\left\{\left(X_{0}, X_{1}, \cdots, X_{n-1}\right) \in B\right\}}\right],
\end{aligned}
$$

where the step (g) follows from the bound (17). From the fact $\{\tau \geq n\}=\Omega_{0} \in\{\tau \leq n-1\} \in \mathcal{F}_{n-1}$, which holds since τ is a stopping time with respect to the canonical filtration $\left\{\mathcal{F}_{n}\right\}_{n=0}^{\infty}$, one can conclude that

$$
\begin{equation*}
\mathbb{E}_{\mu}\left[Y_{n} \cdot \mathbb{1}_{\{\tau \geq n\}} \mid \mathcal{F}_{n-1}\right] \stackrel{\mathbb{P}_{\mu} \text {-a.s. }}{\leq} Y_{n-1} \cdot \mathbb{1}_{\{\tau \geq n\}} \tag{18}
\end{equation*}
$$

for every $n \in \mathbb{N}$. Therefore, we finally arrive at

$$
\begin{aligned}
\mathbb{E}_{\mu}\left[Y_{n \wedge \tau} \mid \mathcal{F}_{n-1}\right] & \stackrel{(\mathrm{h})}{=} \mathbb{E}_{\mu}\left[Y_{n} \cdot \mathbb{1}_{\{\tau \geq n\}} \mid \mathcal{F}_{n-1}\right]+\sum_{k=0}^{n-1} Y_{k} \cdot \mathbb{1}_{\{\tau=k\}} \\
& \stackrel{(\mathrm{i})}{\leq} Y_{n-1} \cdot \mathbb{1}_{\{\tau \geq n\}}+\sum_{k=0}^{n-1} Y_{k} \cdot \mathbb{1}_{\{\tau=k\}} \\
& =Y_{(n-1) \wedge \tau}
\end{aligned}
$$

\mathbb{P}_{μ}-almost surely, where the step (h) holds since for every $k \in[0: n-1], Y_{k} \cdot \mathbb{1}_{\{\tau=k\}} \in \mathcal{F}_{k} \subseteq \mathcal{F}_{n-1}$, and the step (i) makes use of the inequality (18). Hence, $\left\{Y_{n \wedge \tau}\right\}_{n=0}^{\infty}$ is a positive supermartingale with respect to the canonical filtration $\left\{\mathcal{F}_{n}\right\}_{n=0}^{\infty}$ on the canonical probability space $\left(\Omega_{0}, \mathcal{F}_{\infty}, \mathbb{P}_{\mu}\right)$, where $\mu(\cdot)$ is a probability measure on $\left(\mathbb{S}, 2^{\mathbb{S}}\right)$ with $\sum_{x \in \mathbb{S}} x \mu(x)<+\infty$.

Note that every Dirac measure centered on some fixed state $x \in \mathbb{S}, \delta_{x}(\cdot)$, satisfies the condition of Claim 5. Indeed,

$$
\sum_{y \in \mathbb{S}} y \cdot \delta_{x}(y)=x<+\infty
$$

for all $x \in \mathbb{S}$. Thus, $\left\{Y_{n \wedge \tau}\right\}_{n=0}^{\infty}$ is a positive supermartingale with respect to the canonical filtration $\left\{\mathcal{F}_{n}\right\}_{n=0}^{\infty}$ on the canonical probability space $\left(\Omega_{0}, \mathcal{F}_{\infty}, \mathbb{P}_{x}\right)$, for every state $x \in \mathbb{S}$. Due to the optional stopping theorem for non-negative supermartingales (Theorem 4.8.4 in [1]), one has

$$
\begin{aligned}
x & =\mathbb{E}_{x}\left[X_{0}\right]=\mathbb{E}_{x}\left[Y_{0 \wedge \tau}\right] \\
& \geq \mathbb{E}_{x}\left[Y_{\tau \wedge \tau}\right] \\
& =\mathbb{E}_{x}\left[Y_{\tau}\right] \\
& =\mathbb{E}_{x}\left[X_{\tau}+\tau \epsilon\right] \\
& \geq \epsilon \cdot \mathbb{E}_{x}[\tau],
\end{aligned}
$$

thereby $\mathbb{E}_{x}[\tau] \leq \frac{x}{\epsilon}$ for all $x \in \mathbb{S}$. This completes the solution to Problem 5 .

References

[1] Rick Durrett. Probability: theory and examples, volume 49. Cambridge university press, 2019.

