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Throughout this homework, let Z, denote the set of all non-negative integers, Ry be the set of all non-
negative real numbers, and [a : b] ;== {a,a+1,--- ;b —1,b} fora,b € Z with a < b. We also write [n] := [1 : n]
for n € N. Moreover, |4 denotes the disjoint union, and given a set A and k € Z, ( ) ={BCA:|B|=k}.
Also, we use the symbol S instead of S to denote the underlying state space of stochastic processes.

We assume throughout this homework that the underlying state space S is countable and it is equipped
with the discrete o-field 25 on S. Since (S, QS) is a nice measurable space, it admits the canonical construction
in Section 5.2 in [1] of the probability measure P, on the sequence space (o, Fs) so that the sequence of
coordinate maps { X, (w) := wy },— is a homogeneous Markov chain with initial distribution x4 and transition

probability p(-,-) : Sx 2% — [0, 1]. We remark that it is conventional to write p(z,y) := p(z, {y}) for z,y € S.

Problem 1 (Ezercise 5.3.1. in [1]).

Let us use the symbol V}, instead of vi for each & € N to denote the random vectors of our interest. Let
o0
U ({n} x S

denote the state space of random vectors {Vj : k € N}, and note that V is a countable set. In order to
show that {V} : k € N} are independent under the canonical probability space (Qo, Foo, Py), where y € S is

a recurrent space of the given Markov chain, if suffices to show that
Py {Vkl :Uk17vk‘2 :,Uk27"‘ ) _vkr HP {Vk } (1)

forallr e N, 1 < ki <ky<--- <ky <400, and vg,,Vgy, - ,V, € V.
Now fix any k& > 2 and v := (n,xg, 21, -+ ,&n—1) € V. Define Y : Qg — R by

1 if 711(‘”) = naXO(w) - HJ(],XI((U) =Ty, 7X'r'1(w)fl<w) = Tn-1;

0 otherwise.

Y(w) =1y (w) =

It’s clear that Y is a bounded measurable function from (Qg, Foo) to (R, B(R)), where B(R) is the Borel



o-field on R. Also if R;_1(w) < 400, we find that

(Y 0 GRk—l) (w) =

)1 if rp (Hkal(w)) =n, Xy (Gkal(oJ)) =20, 5 Xy (w)—=1 (Hkal(w)) = Tp_1;
0 otherwise.

@ 1 if Tk(w) =n, XRk_l(w) (OJ) = Zg," " 7XRk_1(w)+7“k(w)—1(w) = Tn—1; (2)
0 otherwise.
= ]l{Vk:v} (w)a

where the step (a) holds since when Rj_;(w) < 400,

(r1o0g, ) (w)=inf{n>0:X, (g, ,(w)) =y}
=inf{n>0:X,1p (W) =y}
= Ri(w) — Rp—1(w)
= g (w).
Therefore, we have
Py { Vi = v| ka_l} =By [Liv=oy| P

By | Lvi= v}‘ka 1] LR, ) <+oo}

C

ﬁ

e
&=

y | (Y obr,_ 1) ) I[{Rk—1<-ir00}‘ ]:Rk—l] (3)

[
y [H{Vk:v} ' H{Rk_1<+oo}‘ Fry_]
[(
2E, [v

] © 9Rk—1 ‘ ]:Rk—l] ’ ]]'{Rk71<+00}

ﬁﬁ

Xr,_, Y] LR, <+oo}

y [Y] =Py {V1 =0}

Il
=

P,-almost surely, where the above steps (b)—(g) can be validated as follows:
(b) since y € S is a recurrent state, Py {R, < +oo} =1 for all n € Z4 by Theorem 5.2.6 in [1];
(c) {Rk—1 < 400} € Fg,_,, because
{Rk—1 < +o0}N{Rx_1 =n}={Rp_1 =n} € F,
for all n € Z;
(d) the equation (2);
(e) the same reason as the step (c);

(f) the strong Markov property (Theorem 5.2.5 in [1]);

(g) if Rk—1 < +o00, then X, | =y and since y € S is a recurrent state, P, {R,, < +oo} = 1for alln € Z
by Theorem 5.2.6 in [1].



Here, {F,, := 0 (X0, X1, -+, Xn)},— is the canonical filtration of the Markov chain {X,},7 . In particular,

we can deduce

Py {Vi =v} =Ey [Py { Vi =v| Fr, . }] =P, {Vi =0} (4)

for all £ € N and v € V, thereby {Vj, : k € N} are identically distributed.

Finally, we prove the independence of the sequence {Vi};~,. Choose any sequence {v;}7-; in V, where

» U —1

v = (nk,x(()k),xgk), o z® ) , Vk € N.
Then, we can make the following observations:
Vi=wv, - Vici =1} N{Ry—1 =n} =0 € F,

forall n € Z \ {25;11 nj}, and

k1
(Vi=v1, Vici=v_1} N Ry = )
i=1
k-1
= | [ {Vi = v}
j=1
kil . . .
= {R] — Rj—l = nj7XRj,1 — xgj)yXRj71+1 — 1:&])7 e 7XRJ7]. = xg])_l} (6)
j=1
k-1

J - | |
gl <{Rj ) Z”’} X, = X = Xy = wffj’_l}>
Jj=1 i=1

Fej  CFep

€ Zgzl ng Zi‘c:ll g
(h)
6 fzftz—ll ni’

where the step (h) holds since

J
{Rj = an} €7 Zzlm < ]:Z?;llni;
i=1

()

_ _ . _ .9 _ _ .9 _ _ _
{XZ£;11 n; 10 szz;f b1 = 15 X Jini-1 xnrl} c€o (XZE nﬂXZZf it Xy m—l)

- j - -

for every j € [k—1]. Combining two observations (5) and (6) concludes {V; = vy,

Hence, we reach

=1

i=1 "

o Vemr =uvp—1} € Fry -

Py{Vi=wv1,-- , Vi1 = vp—1, Vi = 0} = /{ Ly, =v, ydPy
\%1

=v1,,Ve—1=0p—1}

2 / P, {Vi = v} dP, (7)
{Vi=v1, ,Ve_1=vip_1}

=P, {Vi=v1,-- Vi1 = vp—

1} Py {Vk = v},



where the step (i) follows from (3) together with (4) for v = vi. Therefore, we can deduce inductively from
(7) that

k
Py{Vi=v1,Vo=va, Vi = v} = [[ Py {V = v} (8)
j=1

for all k € N and vy, v2,- -+ ,v; € V, and this immediately yields our desired result (1). Hence, {V} : k € N}

is a sequence of independent and identically distributed random vectors.

Problem 2 (Ezercise 5.53.2. in [1]).
Fix any states x,y, z € S. Define a function Z : Qg — R by

Z(w) = ]l{Tz<+oo}(w) = H{anz for some n>0} (w)

Then, Z is a bounded measurable function on the sequence space (Qo, Foo) and if Ty (w) < 400, we find that

(Z o 0r,) (W) = L{x, = for some n>0} (01, (W)
= 1{x,== for some n>T,} (W) 9)
< Lix, == for some n>0} (W) = Z(w).
Thus, we obtain
(Zo01,)  Vr,<hooy < Z - L{z,<too) (10)
on Q. Hence, we conclude that
Pz = Py {T, < +o0} = E; [Z]
> By [Z- 17, <4o0)]
S ((Z005) Lz, cim)]
=B, . [(Z001,) - 1z, <o} | ]
YR, [E, [2005,| Fr,] 1z, <io0)]

Y, [EXTy 2] ﬂ{Ty<+°°}}

2k, [Ey [Z] - Lz, <to0)]
=Py {T) < +00} Py {T. < +o0}
= PxyPyz,
where the steps (a)—(d) can be justified as follows:
(a) the inequality (10);

(b) {T, < 400} € Fr,, since
{Ty <+oo}n{Ty =n} ={T, =n} e F

for all n € Zy;

(c) the Strong Markov property (Theorem 5.2.5 in [1]);

(d) we have X7, =y when T}, < +o0.



This completes the proof of the desired result.

Problem 3 (Ezercise 5.53.5. in [1]).

We first note that “p(z) — 0 as x — +00” means that every superlevel set L3,(p) :={z € S: p(x) > M}
is finite for all M € (0,400), while “p(x) — +00 as x — 400" indicates that every sublevel set L,,(p) :=
{r €S:¢(x) < M} is finite for all M € (0,+00). Also, if the state space S is finite, then the given Markov
chain {X,} 7, is recurrent due to Theorem 5.3.8 in [1]. Therefore, we may assume that the state space S
is countably infinite. Let 0 := min{p(z) : € F} > 0, and define ®(z) : S — [0,+00) by ®(z) := @ for

x € S. One can see that the function ® satisfies the following properties:
(P1) B, [8(X1)] = 3, cq p(, 5)0(y) < (x) for all z € S\ F;
(P2) ®(x) >1forall z € F.

Claim 1. Let Vg :=inf{n € Zy : X,, € F'} be the first visiting time to F C'S of the Markov chain {X,}, .
Then, we have
O(x) > P, {Vp < +o0}, Vx €S. (11)

Proof of Claim 1.
To begin with, we fix any xg € S\ F. We claim that the following bound holds for every n € N:

O(wg) > > | Y Play) > p(zo, x1)p(w1, x2) - - p(Tp—1, Tk)

k=1 [zpel (21,22, 1) ES\F)F !

+ Z O(xy) Z p(zo, z1)p(z1,22) - - - P(T—1, Tn)

xneS\F ($17w27"'7$”*1)6(S\F)n71

We proceed the proof of the above claim by induction on n. The case n = 1 is immediate from the property



(P1) of the function ®. We now assume that the above claim holds for n = — 1, where [ > 2. Then,

-1
®(z0) > {Z P () { > p(zo, x1)p(z1,32) -+ 'p(wkbivk)}]

(w132, wp_1)E(S\F)F

+ Z ‘I’(ﬂ«"ll){ Z p($0,$1)p($1,$2)“'p($l2,3311)}
(

1,22, 1 2)E(S\F)' 2

!
(2) {Z (zy) { Z p(zo, x1)p(x1, x2) - - -p(xkl,xk)}]

(x1,22, 1) ES\F)F

+ Y {Zp(xzhxz)@(a:z)}{ > p(xo,xl)p($1,$2)”'p($l271’l1)}

z11ES\F \ 21€8 (21,22, ,21-2)E(S\F)' 2

-1
= Z {Z (I)(xk){ Z P(moaxl)P(M,@)mp(fﬂkhwk)}]
(1,22,

xp_1)ES\F)F!

+ Z { Z p(xllal'l)q)(xl)} { Z p(zo, z1)p(x1, 22) -+ 'p($l2»$l1)}
(w1,22,

zeF ~,xl_2)e(S\F)l’2

+ > { > p(fﬁlhlﬂz)‘l)(ivz)}{ > p(xo,wl)p(m,zz)“'p(mz,fBl1)}
(

z 1 ES\F | m€S\F T1,29, ,@1_o)E(S\F)! 72

—1
- Z {Z (I)(x’f){ Z p(xval)p(x17x2)"'p(xk1>$k)}]

(x1,22, ,xK_1)ES\F)F!

+ > () { > p(wo, 21)p(w1,22) - - -p(xu,xz)}
(

x1,@2,,m-1)E(S\F)

+ > B(w) { > p(xo, 71)p(z1,72) - - -p(:czhxz)}
(

x1,@2,,x1—1)E(S\F)

l
= Z {Z (I)(xk){ Z P(ﬂﬁoaxl)P(M,m)“‘p(fﬂkhwk)}]
(1,22,

xp—1)ES\F)F !

+ ) ‘P(ffl){ > p(xowl)p(%la%z)“'p(xl1,1’1)},
(

x1,@2, 211 E(S\F)

where the step (a) follows from the property (P1) of the function ®, and this ends the proof of the bound



(12) for all n € N. So for any n € N,

O(zo) > Y | D D(aw) > p(xo, x1)p(z1,22) - p(Th—1, Tk)
k=1 |zp€l 57 (1,22, @p—1)ES\F)F ! = Py {X1=21, - Xp—1=2k—1, Xp=21}
+ > O(z) > p(xo, z1)p(x1,22) - p(Tp—1, )
on €S\F (21,32, B —1)ES\F)" !
(b) &

Y

Z Z Z Peo {X1 =21, -+, Xpm1 = 2p—1, Xp =1} (13)

k=1 [2x€F \ (21,22, ,xp_1)E(S\F)*!

n
= P {X1 €S\F, -+, X4_1 €S\ F, X € F}
k=1

DS P, (Ve = k)
k=1
- ]Pxo {VF S n} )
where the above steps (b) and (c) are predicated on the following reasons:
(b) the property (P2) of the function ® together with the equation (5.2.3) in [1];
(c) the definition of the first visiting time Vg to F' C S, and the assumption g € S\ F.

By letting n — oo in the inequality (13), we finally obtain ®(z¢) > P,, {Vr < 400} for every zyp € S\ F.
Furthermore, we know that ®(z) > 1 = P, {Vr < +oo} for all x € F, thereby it establishes our desired

claim.

O
According to Claim 1, we know that
p(x) =6 ®(x) > 6 P {Vp < +o0}, Vz €S. (14)

Since the superlevel set L] (¢) = {z €S: p(z) > %} is finite, its complement S\ £ (¢) is non-empty. Thus,
2 2
we may take a state y € S so that ¢(y) < %. If follows that

[\CRIS)

> (15)

S

1
P, {Vr < +o0} < 5 o(y) <

and so it’s clear that y € S\ F'. Now, we assume on the contrary that the Markov chain contains a recurrent
state. Due to the irreducibility of the Markov chain, all states are recurrent by Theorem 5.3.2 in [1]. Also,
we find from Theorem 5.3.2 in [1] that

d
pye = Py {T < 400} 2 Py {Ve < +oo} =1

for every « € F', where the step (d) holds since y € S\F. As Vp <V, for x € F, we arrive at P, {Vp < +00} =
1 and this conclusion violates the inequality (15). Hence, all states in S of the Markov chain is transient,

i.e., the Markov chain {X,,}7 is transient.



Problem 4 (Ezercise 5.3.7. in [1]).

(=): Assume that the homogeneous Markov chain {X,,} >, with transition probability p(-,-) : S x S —
[0, 1] is irreducible and recurrent. Let f : S — R, be any non-negative superharmonic function with respect
to the transition probability p(-,-) : S x S — [0,1]. According to the definition of superharmonic functions,

the stochastic process { f(X,)},—, is a non-negative supermartingale with respect to the canonical filtration

{-Fn =0 (X07X17 e 7Xn)}zo:0'
Choose any two states z,y € S. Since {X, },- is an irreducible and recurrent Markov chain, we know

that the state y is recurrent and py, > 0. By Theorem 5.3.2 in [1], we obtain
Pay = Pu {T, < 400} =1,Vz,y € S. (16)

As the time of the first return to state y, T, = inf {n > 1: X,, = y}, is a stopping time with respect to the
canonical filtration {F,},~,, the optional stopping theorem for non-negative supermartingales (Theorem

4.8.4. in [1]) yields

f(a) =B, [f(Xo0)] = E, [f (X1,)]

()
= E; [f (X1,) L1, < 4o0)]

(b)

= Eo [£(y) - L7, <00} (17)
= f(y) - P {T, < +oo}
< fy),

where the above steps (a)—(c) can be justified as follows:
(a) the equation (16);
(b) if T, < 400, then X7, = y;
(c) the equation (16).

Since the inequality (17) holds for every pair (z,y) € S X S of states, we may conclude that the function f

is constant on S.

(«<): Conversely, we now assume that the homogeneous Markov chain {X,,} ° , with transition proba-
bility p(,-) : Sx S — [0, 1] is irreducible and every non-negative superharmonic function with respect to the
transition probability p(-,-) : S x S — [0, 1] is constant. Given any fixed state y € S, we consider the first
visiting time Vj, := inf {n > 0 : X, = y} to state y. Define a function h: S — R by

h(z) =P, {V, < 400}, Vx €S.

It’s clear from the definition of h : S — Ry that h(y) = 1. We claim that h : S — R, is a superharmonic

function with respect to the transition probability p(-,-). In order to prove this claim, we define a function
Y :Qyp— R by

Y(‘*u) = I[{V;v,<-|—oo}(("-)) = I[{Xn:y for some yZO}(w)a Vw € Q.



It’s clear that Y is a bounded measurable function on the sequence space (2o, Foo). Also, one can see that

(Y © 01) (w) = ]l{Xn:y for some y>0} (91 (w))
- ]l{Xn:y for some y>1} (w) (18)
(

< ]l{Xn:y for some y>0} w) - Y(w)

for every w € §2g. Thus,

hz) =By [Lgy,<4o0}] = Ex [Y]

(d)
> E,[Y o8]

=E, [E, [Y o 61| F1]]
YR, [Ex, Y]]

=B, |y (Bx, [Y]- 1ix,—sy)
zZ€S (19)

f
(:) ZEJE [Exl [Y] : H{X1:z}]

z€S

=D B [E [V] - D]

z€S

=> P, {X1=2}E.[Y]

z€S

=3 ple.2)h(z),

z€S

thereby h : S — R, is a non-negative superharmonic function with respect to the transition probability
p(+,-). Here, the above steps (d)—(f) can be verified as follows:

(d) it is simply the inequality (18);

(e) the Markov property (Theorem 5.2.3 in [1]);

(f) the Fubini-Tonelli’s theorem, since the summands are non-negative.

Hence, h is a constant function on S. Since we already know that h(y) = 1, we can conclude that h(z) =1

for all z € S. As the fixed state y € S is arbitrarily chosen, we obtain
P, {V; < +oo} =1 (20)

for all z,y € S.

Finally, we confirm that the Markov chain {X,,}>°  is recurrent. Fix any state € S and choose another
state y € S\ {z} arbitrarily. Due to (20), we have pyy = P, {V,, < +o0} =1 and py, = Py {V, < 400} = 1.
Applying Problem 2 (Ezercise 5.3.2 in [1]) gives puz > pay - Pye = 1, 850 pge = 1 for all 2 € S. Hence, all

states in S are recurrent, i.e., the transition probability p(-,-) and the Markov chain {X,,} °, are recurrent.
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