MAS651 Theory of Stochastic Processes Homework \#3

20150597 Jeonghwan Lee

Department of Mathematical Sciences, KAIST

March 24, 2021

Throughout this homework, let \mathbb{Z}_{+}denote the set of all non-negative integers, \mathbb{R}_{+}be the set of all nonnegative real numbers, and $[a: b]:=\{a, a+1, \cdots, b-1, b\}$ for $a, b \in \mathbb{Z}$ with $a \leq b$. We also write $[n]:=[1: n]$ for $n \in \mathbb{N}$. Moreover, \biguplus denotes the disjoint union, and given a set A and $k \in \mathbb{Z}_{+},\binom{A}{k}:=\{B \subseteq A:|B|=k\}$. Also, we use the symbol \mathbb{S} instead of S to denote the underlying state space of stochastic processes.

We assume throughout this homework that the underlying state space \mathbb{S} is countable and it is equipped with the discrete σ-field $2^{\mathbb{S}}$ on \mathbb{S}. Since $\left(\mathbb{S}, 2^{\mathbb{S}}\right)$ is a nice measurable space, it admits the canonical construction in Section 5.2 in [1] of the probability measure \mathbb{P}_{μ} on the sequence space $\left(\Omega_{0}, \mathcal{F}_{\infty}\right)$ so that the sequence of coordinate maps $\left\{X_{n}(\omega):=\omega_{n}\right\}_{n=0}^{\infty}$ is a homogeneous Markov chain with initial distribution μ and transition probability $p(\cdot, \cdot): \mathbb{S} \times 2^{\mathbb{S}} \rightarrow[0,1]$. We remark that it is conventional to write $p(x, y):=p(x,\{y\})$ for $x, y \in \mathbb{S}$.

Problem 1 (Exercise 5.3.1. in [1]).
Let us use the symbol V_{k} instead of v_{k} for each $k \in \mathbb{N}$ to denote the random vectors of our interest. Let

$$
\mathbb{V}:=\bigcup_{n=1}^{\infty}\left(\{n\} \times \mathbb{S}^{n}\right)
$$

denote the state space of random vectors $\left\{V_{k}: k \in \mathbb{N}\right\}$, and note that \mathbb{V} is a countable set. In order to show that $\left\{V_{k}: k \in \mathbb{N}\right\}$ are independent under the canonical probability space $\left(\Omega_{0}, \mathcal{F}_{\infty}, \mathbb{P}_{y}\right)$, where $y \in \mathbb{S}$ is a recurrent space of the given Markov chain, if suffices to show that

$$
\begin{equation*}
\mathbb{P}_{y}\left\{V_{k_{1}}=v_{k_{1}}, V_{k_{2}}=v_{k_{2}}, \cdots, V_{k_{r}}=v_{k_{r}}\right\}=\prod_{j=1}^{r} \mathbb{P}_{y}\left\{V_{k_{j}}=v_{k_{j}}\right\} \tag{1}
\end{equation*}
$$

for all $r \in \mathbb{N}, 1 \leq k_{1}<k_{2}<\cdots<k_{r}<+\infty$, and $v_{k_{1}}, v_{k_{2}}, \cdots, v_{k_{r}} \in \mathbb{V}$.
Now fix any $k \geq 2$ and $v:=\left(n, x_{0}, x_{1}, \cdots, x_{n-1}\right) \in \mathbb{V}$. Define $Y: \Omega_{0} \rightarrow \mathbb{R}$ by

$$
Y(\omega):=\mathbb{1}_{\left\{V_{1}=v\right\}}(\omega)= \begin{cases}1 & \text { if } r_{1}(\omega)=n, X_{0}(\omega)=x_{0}, X_{1}(\omega)=x_{1}, \cdots, X_{r_{1}(\omega)-1}(\omega)=x_{n-1} \\ 0 & \text { otherwise }\end{cases}
$$

It's clear that Y is a bounded measurable function from $\left(\Omega_{0}, \mathcal{F}_{\infty}\right)$ to $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$, where $\mathcal{B}(\mathbb{R})$ is the Borel
σ-field on \mathbb{R}. Also if $R_{k-1}(\omega)<+\infty$, we find that

$$
\begin{align*}
\left(Y \circ \theta_{R_{k-1}}\right)(\omega) & = \begin{cases}1 & \text { if } r_{1}\left(\theta_{R_{k-1}}(\omega)\right)=n, X_{0}\left(\theta_{R_{k-1}}(\omega)\right)=x_{0}, \cdots, X_{r_{1}(\omega)-1}\left(\theta_{R_{k-1}}(\omega)\right)=x_{n-1} ; \\
0 & \text { otherwise }\end{cases} \\
& \stackrel{(\mathrm{a})}{=} \begin{cases}1 & \text { if } r_{k}(\omega)=n, X_{R_{k-1}(\omega)}(\omega)=x_{0}, \cdots, X_{R_{k-1}(\omega)+r_{k}(\omega)-1}(\omega)=x_{n-1} ; \\
0 & \text { otherwise } .\end{cases} \tag{2}\\
& =\mathbb{1}_{\left\{V_{k}=v\right\}}(\omega),
\end{align*}
$$

where the step (a) holds since when $R_{k-1}(\omega)<+\infty$,

$$
\begin{aligned}
\left(r_{1} \circ \theta_{R_{k-1}}\right)(\omega) & =\inf \left\{n>0: X_{n}\left(\theta_{R_{k-1}}(\omega)\right)=y\right\} \\
& =\inf \left\{n>0: X_{n+R_{k-1}(\omega)}(\omega)=y\right\} \\
& =R_{k}(\omega)-R_{k-1}(\omega) \\
& =r_{k}(\omega)
\end{aligned}
$$

Therefore, we have

$$
\begin{align*}
\mathbb{P}_{y}\left\{V_{k}=v \mid \mathcal{F}_{R_{k-1}}\right\} & =\mathbb{E}_{y}\left[\mathbb{1}_{\left\{V_{k}=v\right\}} \mid \mathcal{F}_{R_{k-1}}\right] \\
& \stackrel{(\mathrm{b})}{=} \mathbb{E}_{y}\left[\mathbb{1}_{\left\{V_{k}=v\right\}} \mid \mathcal{F}_{R_{k-1}}\right] \cdot \mathbb{1}_{\left\{R_{k-1}<+\infty\right\}} \\
& \stackrel{(\mathrm{c})}{=} \mathbb{E}_{y}\left[\mathbb{1}_{\left\{V_{k}=v\right\}} \cdot \mathbb{1}_{\left\{R_{k-1}<+\infty\right\}} \mid \mathcal{F}_{R_{k-1}}\right] \\
& \stackrel{(\mathrm{d})}{=} \mathbb{E}_{y}\left[\left(Y \circ \theta_{R_{k-1}}\right) \cdot \mathbb{1}_{\left\{R_{k-1}<+\infty\right\}} \mid \mathcal{F}_{R_{k-1}}\right] \tag{3}\\
& \stackrel{(\mathrm{e})}{=} \mathbb{E}_{y}\left[Y \circ \theta_{R_{k-1}} \mid \mathcal{F}_{R_{k-1}}\right] \cdot \mathbb{1}_{\left\{R_{k-1}<+\infty\right\}} \\
& \stackrel{(\mathrm{f})}{=} \mathbb{E}_{X_{R_{k-1}}}[Y] \cdot \mathbb{1}_{\left\{R_{k-1}<+\infty\right\}} \\
& \stackrel{(\mathrm{g})}{=} \mathbb{E}_{y}[Y]=\mathbb{P}_{y}\left\{V_{1}=v\right\}
\end{align*}
$$

\mathbb{P}_{y}-almost surely, where the above steps (b)-(g) can be validated as follows:
(b) since $y \in \mathbb{S}$ is a recurrent state, $\mathbb{P}_{y}\left\{R_{n}<+\infty\right\}=1$ for all $n \in \mathbb{Z}_{+}$by Theorem 5.2.6 in [1];
(c) $\left\{R_{k-1}<+\infty\right\} \in \mathcal{F}_{R_{k-1}}$, because

$$
\left\{R_{k-1}<+\infty\right\} \cap\left\{R_{k-1}=n\right\}=\left\{R_{k-1}=n\right\} \in \mathcal{F}_{n}
$$

for all $n \in \mathbb{Z}_{+}$;
(d) the equation (2);
(e) the same reason as the step (c);
(f) the strong Markov property (Theorem 5.2.5 in [1]);
(g) if $R_{k-1}<+\infty$, then $X_{R_{k-1}}=y$ and since $y \in \mathbb{S}$ is a recurrent state, $\mathbb{P}_{y}\left\{R_{n}<+\infty\right\}=1$ for all $n \in \mathbb{Z}_{+}$ by Theorem 5.2.6 in [1].

Here, $\left\{\mathcal{F}_{n}:=\sigma\left(X_{0}, X_{1}, \cdots, X_{n}\right)\right\}_{n=0}^{\infty}$ is the canonical filtration of the Markov chain $\left\{X_{n}\right\}_{n=0}^{\infty}$. In particular, we can deduce

$$
\begin{equation*}
\mathbb{P}_{y}\left\{V_{k}=v\right\}=\mathbb{E}_{y}\left[\mathbb{P}_{y}\left\{V_{k}=v \mid \mathcal{F}_{R_{k-1}}\right\}\right]=\mathbb{P}_{y}\left\{V_{1}=v\right\} \tag{4}
\end{equation*}
$$

for all $k \in \mathbb{N}$ and $v \in \mathbb{V}$, thereby $\left\{V_{k}: k \in \mathbb{N}\right\}$ are identically distributed.
Finally, we prove the independence of the sequence $\left\{V_{k}\right\}_{k=1}^{\infty}$. Choose any sequence $\left\{v_{k}\right\}_{k=1}^{\infty}$ in \mathbb{V}, where

$$
v_{k}=\left(n_{k}, x_{0}^{(k)}, x_{1}^{(k)}, \cdots, x_{n_{k}-1}^{(k)}\right), \forall k \in \mathbb{N} .
$$

Then, we can make the following observations:

$$
\begin{equation*}
\left\{V_{1}=v_{1}, \cdots, V_{k-1}=v_{k-1}\right\} \cap\left\{R_{k-1}=n\right\}=\varnothing \in \mathcal{F}_{n} \tag{5}
\end{equation*}
$$

for all $n \in \mathbb{Z}_{+} \backslash\left\{\sum_{j=1}^{k-1} n_{j}\right\}$, and

$$
\begin{aligned}
&\left\{V_{1}=v_{1}, \cdots, V_{k-1}=v_{k-1}\right\} \cap\left\{R_{k-1}=\sum_{j=1}^{k-1} n_{j}\right\} \\
&= \bigcap_{j=1}^{k-1}\left\{V_{j}=v_{j}\right\} \\
&= \bigcap_{j=1}^{k-1}\left\{R_{j}-R_{j-1}=n_{j}, X_{R_{j-1}}=x_{0}^{(j)}, X_{R_{j-1}+1}=x_{1}^{(j)}, \cdots, X_{R_{j}-1}=x_{n_{j}-1}^{(j)}\right\} \\
&= \bigcap_{j=1}^{k-1} \underbrace{}_{\in \mathcal{F}_{\sum_{i=1}^{j} n_{i} \subseteq \mathcal{F}_{\sum_{i=1}^{k-1} n_{i}}}^{\left(\left\{R_{j}=\sum_{i=1}^{j} n_{i}\right\} \cap\left\{X_{\sum_{i=1}^{j-1} n_{i}}=x_{0}^{(j)}, X_{\sum_{i=1}^{j-1} n_{i}+1}=x_{1}^{(j)}, \cdots, X_{\sum_{i=1}^{j} n_{i}-1}=x_{n_{j}-1}^{(j)}\right\}\right)}} \\
& \underset{\sim}{\text { (h) }} \in \mathcal{F}_{\sum_{i=1}^{k-1} n_{i}},
\end{aligned}
$$

where the step (h) holds since

$$
\begin{aligned}
\left\{R_{j}=\sum_{i=1}^{j} n_{i}\right\} & \in \mathcal{F}_{\sum_{i=1}^{j} n_{i}} \subseteq \mathcal{F}_{\sum_{i=1}^{k-1} n_{i}} ; \\
\left\{X_{\sum_{i=1}^{j-1} n_{i}}=x_{0}^{(j)}, X_{\sum_{i=1}^{j-1} n_{i}+1}=x_{1}^{(j)}, \cdots, X_{\sum_{i=1}^{j} n_{i}-1}=x_{n_{j}-1}^{(j)}\right\} & \in \sigma\left(X_{\sum_{i=1}^{j-1} n_{i}}, X_{\sum_{i=1}^{j-1} n_{i}+1}, \cdots, X_{\sum_{i=1}^{j} n_{i}-1}\right) \\
& \subseteq \mathcal{F}_{\sum_{i=1}^{j} n_{i}} \subseteq \mathcal{F}_{\sum_{i=1}^{k-1} n_{i}}
\end{aligned}
$$

for every $j \in[k-1]$. Combining two observations (5) and (6) concludes $\left\{V_{1}=v_{1}, \cdots, V_{k-1}=v_{k-1}\right\} \in \mathcal{F}_{R_{k-1}}$. Hence, we reach

$$
\begin{align*}
\mathbb{P}_{y}\left\{V_{1}=v_{1}, \cdots, V_{k-1}=v_{k-1}, V_{k}=v_{k}\right\} & =\int_{\left\{V_{1}=v_{1}, \cdots, V_{k-1}=v_{k-1}\right\}} \mathbb{1}_{\left\{V_{k}=v_{k}\right\}} \mathrm{d} \mathbb{P}_{y} \\
& \stackrel{(\text { (i) }}{=} \int_{\left\{V_{1}=v_{1}, \cdots, V_{k-1}=v_{k-1}\right\}} \mathbb{P}_{y}\left\{V_{k}=v_{k}\right\} \mathrm{d} \mathbb{P}_{y} \tag{7}\\
& =\mathbb{P}_{y}\left\{V_{1}=v_{1}, \cdots, V_{k-1}=v_{k-1}\right\} \mathbb{P}_{y}\left\{V_{k}=v_{k}\right\},
\end{align*}
$$

where the step (i) follows from (3) together with (4) for $v=v_{k}$. Therefore, we can deduce inductively from (7) that

$$
\begin{equation*}
\mathbb{P}_{y}\left\{V_{1}=v_{1}, V_{2}=v_{2}, \cdots, V_{k}=v_{k}\right\}=\prod_{j=1}^{k} \mathbb{P}_{y}\left\{V_{j}=v_{j}\right\} \tag{8}
\end{equation*}
$$

for all $k \in \mathbb{N}$ and $v_{1}, v_{2}, \cdots, v_{k} \in \mathbb{V}$, and this immediately yields our desired result (1). Hence, $\left\{V_{k}: k \in \mathbb{N}\right\}$ is a sequence of independent and identically distributed random vectors.

Problem 2 (Exercise 5.3.2. in [1]).
Fix any states $x, y, z \in \mathbb{S}$. Define a function $Z: \Omega_{0} \rightarrow \mathbb{R}$ by

$$
Z(\omega):=\mathbb{1}_{\left\{T_{z}<+\infty\right\}}(\omega)=\mathbb{1}_{\left\{X_{n}=z \text { for some } n>0\right\}}(\omega) .
$$

Then, Z is a bounded measurable function on the sequence space $\left(\Omega_{0}, \mathcal{F}_{\infty}\right)$ and if $T_{y}(\omega)<+\infty$, we find that

$$
\begin{align*}
\left(Z \circ \theta_{T_{y}}\right)(\omega) & =\mathbb{1}_{\left\{X_{n}=z \text { for some } n>0\right\}}\left(\theta_{T_{y}}(\omega)\right) \\
& =\mathbb{1}_{\left\{X_{n}=z \text { for some } n>T_{y}\right\}}(\omega) \tag{9}\\
& \leq \mathbb{1}_{\left\{X_{n}=z \text { for some } n>0\right\}}(\omega)=Z(\omega) .
\end{align*}
$$

Thus, we obtain

$$
\begin{equation*}
\left(Z \circ \theta_{T_{y}}\right) \cdot \mathbb{1}_{\left\{T_{y}<+\infty\right\}} \leq Z \cdot \mathbb{1}_{\left\{T_{y}<+\infty\right\}} \tag{10}
\end{equation*}
$$

on Ω_{0}. Hence, we conclude that

$$
\begin{aligned}
\rho_{x z} & =\mathbb{P}_{x}\left\{T_{z}<+\infty\right\}=\mathbb{E}_{x}[Z] \\
& \geq \mathbb{E}_{x}\left[Z \cdot \mathbb{1}_{\left\{T_{y}<+\infty\right\}}\right] \\
& \stackrel{(\mathrm{a})}{\geq} \mathbb{E}_{x}\left[\left(Z \circ \theta_{T_{y}}\right) \cdot \mathbb{1}_{\left\{T_{y}<+\infty\right\}}\right] \\
& =\mathbb{E}_{x}\left[\mathbb{E}_{x}\left[\left(Z \circ \theta_{T_{y}}\right) \cdot \mathbb{1}_{\left\{T_{y}<+\infty\right\}} \mid \mathcal{F}_{T_{y}}\right]\right] \\
& \stackrel{(\mathrm{b})}{=} \mathbb{E}_{x}\left[\mathbb{E}_{x}\left[Z \circ \theta_{T_{y}} \mid \mathcal{F}_{T_{y}}\right] \mathbb{1}_{\left\{T_{y}<+\infty\right\}}\right] \\
& \stackrel{(\mathrm{cc}}{=} \mathbb{E}_{x}\left[\mathbb{E}_{X_{T_{y}}}[Z] \cdot \mathbb{1}_{\left\{T_{y}<+\infty\right\}}\right] \\
& \stackrel{(\mathrm{d})}{=} \mathbb{E}_{x}\left[\mathbb{E}_{y}[Z] \cdot \mathbb{1}_{\left\{T_{y}<+\infty\right\}}\right] \\
& =\mathbb{P}_{x}\left\{T_{y}<+\infty\right\} \mathbb{P}_{y}\left\{T_{z}<+\infty\right\} \\
& =\rho_{x y} \rho_{y z},
\end{aligned}
$$

where the steps (a)-(d) can be justified as follows:
(a) the inequality (10);
(b) $\left\{T_{y}<+\infty\right\} \in \mathcal{F}_{T_{y}}$, since

$$
\left\{T_{y}<+\infty\right\} \cap\left\{T_{y}=n\right\}=\left\{T_{y}=n\right\} \in \mathcal{F}_{n}
$$

for all $n \in \mathbb{Z}_{+}$;
(c) the Strong Markov property (Theorem 5.2.5 in [1]);
(d) we have $X_{T_{y}}=y$ when $T_{y}<+\infty$.

This completes the proof of the desired result.
Problem 3 (Exercise 5.3.5. in [1]).
We first note that " $\varphi(x) \rightarrow 0$ as $x \rightarrow+\infty$ " means that every superlevel set $\mathcal{L}_{M}^{+}(\varphi):=\{x \in \mathbb{S}: \varphi(x) \geq M\}$ is finite for all $M \in(0,+\infty)$, while " $\varphi(x) \rightarrow+\infty$ as $x \rightarrow+\infty$ " indicates that every sublevel set $\mathcal{L}_{M}^{-}(\varphi):=$ $\{x \in \mathbb{S}: \varphi(x) \leq M\}$ is finite for all $M \in(0,+\infty)$. Also, if the state space \mathbb{S} is finite, then the given Markov chain $\left\{X_{n}\right\}_{n=0}^{\infty}$ is recurrent due to Theorem 5.3 .3 in [1]. Therefore, we may assume that the state space \mathbb{S} is countably infinite. Let $\delta:=\min \{\varphi(x): x \in F\}>0$, and define $\Phi(x): \mathbb{S} \rightarrow[0,+\infty)$ by $\Phi(x):=\frac{\varphi(x)}{\delta}$ for $x \in \mathbb{S}$. One can see that the function Φ satisfies the following properties:
(P1) $\mathbb{E}_{x}\left[\Phi\left(X_{1}\right)\right]=\sum_{y \in \mathbb{S}} p(x, y) \Phi(y) \leq \Phi(x)$ for all $x \in \mathbb{S} \backslash F$;
(P2) $\Phi(x) \geq 1$ for all $x \in F$.
Claim 1. Let $V_{F}:=\inf \left\{n \in \mathbb{Z}_{+}: X_{n} \in F\right\}$ be the first visiting time to $F \subseteq \mathbb{S}$ of the Markov chain $\left\{X_{n}\right\}_{n=0}^{\infty}$. Then, we have

$$
\begin{equation*}
\Phi(x) \geq \mathbb{P}_{x}\left\{V_{F}<+\infty\right\}, \forall x \in \mathbb{S} \tag{11}
\end{equation*}
$$

Proof of Claim 1.
To begin with, we fix any $x_{0} \in \mathbb{S} \backslash F$. We claim that the following bound holds for every $n \in \mathbb{N}$:

$$
\begin{align*}
\Phi\left(x_{0}\right) \geq & \sum_{k=1}^{n}\left[\sum_{x_{k} \in F} \Phi\left(x_{k}\right)\left\{\sum_{\left(x_{1}, x_{2}, \cdots, x_{k-1}\right) \in(\mathbb{S} \backslash F)^{k-1}} p\left(x_{0}, x_{1}\right) p\left(x_{1}, x_{2}\right) \cdots p\left(x_{k-1}, x_{k}\right)\right\}\right] \\
& +\sum_{x_{n} \in \mathbb{S} \backslash F} \Phi\left(x_{n}\right)\left\{\sum_{\left(x_{1}, x_{2}, \cdots, x_{n-1}\right) \in(\mathbb{S} \backslash F)^{n-1}} p\left(x_{0}, x_{1}\right) p\left(x_{1}, x_{2}\right) \cdots p\left(x_{n-1}, x_{n}\right)\right\} . \tag{12}
\end{align*}
$$

We proceed the proof of the above claim by induction on n. The case $n=1$ is immediate from the property
(P1) of the function Φ. We now assume that the above claim holds for $n=l-1$, where $l \geq 2$. Then,

$$
\begin{aligned}
& \Phi\left(x_{0}\right) \geq \sum_{k=1}^{l-1}\left[\sum_{x_{k} \in F} \Phi\left(x_{k}\right)\left\{\sum_{\left(x_{1}, x_{2}, \cdots, x_{k-1}\right) \in(\mathbb{S} \backslash F)^{k-1}} p\left(x_{0}, x_{1}\right) p\left(x_{1}, x_{2}\right) \cdots p\left(x_{k-1}, x_{k}\right)\right\}\right] \\
& +\sum_{x_{l-1} \in \mathbb{S} \backslash F} \Phi\left(x_{l-1}\right)\left\{\sum_{\left(x_{1}, x_{2}, \cdots, x_{l-2}\right) \in(\mathbb{S} \backslash F)^{l-2}} p\left(x_{0}, x_{1}\right) p\left(x_{1}, x_{2}\right) \cdots p\left(x_{l-2}, x_{l-1}\right)\right\} \\
& \stackrel{(\mathrm{a})}{\geq} \sum_{k=1}^{l-1}\left[\sum_{x_{k} \in F} \Phi\left(x_{k}\right)\left\{\sum_{\left(x_{1}, x_{2}, \cdots, x_{k-1}\right) \in(\mathbb{S} \backslash F)^{k-1}} p\left(x_{0}, x_{1}\right) p\left(x_{1}, x_{2}\right) \cdots p\left(x_{k-1}, x_{k}\right)\right\}\right] \\
& +\sum_{x_{l-1} \in \mathbb{S} \backslash F}\left\{\sum_{x_{l} \in \mathbb{S}} p\left(x_{l-1}, x_{l}\right) \Phi\left(x_{l}\right)\right\}\left\{\sum_{\left(x_{1}, x_{2}, \cdots, x_{l-2}\right) \in(\mathbb{S} \backslash F)^{l-2}} p\left(x_{0}, x_{1}\right) p\left(x_{1}, x_{2}\right) \cdots p\left(x_{l-2}, x_{l-1}\right)\right\} \\
& =\sum_{k=1}^{l-1}\left[\sum_{x_{k} \in F} \Phi\left(x_{k}\right)\left\{\sum_{\left(x_{1}, x_{2}, \cdots, x_{k-1}\right) \in(\mathbb{S} \backslash F)^{k-1}} p\left(x_{0}, x_{1}\right) p\left(x_{1}, x_{2}\right) \cdots p\left(x_{k-1}, x_{k}\right)\right\}\right] \\
& +\sum_{x_{l-1} \in \mathbb{S} \backslash F}\left\{\sum_{x_{l} \in F} p\left(x_{l-1}, x_{l}\right) \Phi\left(x_{l}\right)\right\}\left\{\sum_{\left(x_{1}, x_{2}, \cdots, x_{l-2}\right) \in(\mathbb{S} \backslash F)^{l-2}} p\left(x_{0}, x_{1}\right) p\left(x_{1}, x_{2}\right) \cdots p\left(x_{l-2}, x_{l-1}\right)\right\} \\
& +\sum_{x_{l-1} \in \mathbb{S} \backslash F}\left\{\sum_{x_{l} \in \mathbb{S} \backslash F} p\left(x_{l-1}, x_{l}\right) \Phi\left(x_{l}\right)\right\}\left\{\sum_{\left(x_{1}, x_{2}, \cdots, x_{l-2}\right) \in(\mathbb{S} \backslash F)^{l-2}} p\left(x_{0}, x_{1}\right) p\left(x_{1}, x_{2}\right) \cdots p\left(x_{l-2}, x_{l-1}\right)\right\} \\
& =\sum_{k=1}^{l-1}\left[\sum_{x_{k} \in F} \Phi\left(x_{k}\right)\left\{\sum_{\left(x_{1}, x_{2}, \cdots, x_{k-1}\right) \in(\mathbb{S} \backslash F)^{k-1}} p\left(x_{0}, x_{1}\right) p\left(x_{1}, x_{2}\right) \cdots p\left(x_{k-1}, x_{k}\right)\right\}\right] \\
& +\sum_{x_{l} \in F} \Phi\left(x_{l}\right)\left\{\sum_{\left(x_{1}, x_{2}, \cdots, x_{l-1}\right) \in(\mathbb{S} \backslash F)^{l-1}} p\left(x_{0}, x_{1}\right) p\left(x_{1}, x_{2}\right) \cdots p\left(x_{l-1}, x_{l}\right)\right\} \\
& +\sum_{x_{l} \in \mathbb{S} \backslash F} \Phi\left(x_{l}\right)\left\{\sum_{\left(x_{1}, x_{2}, \cdots, x_{l-1}\right) \in(\mathbb{S} \backslash F)^{l-1}} p\left(x_{0}, x_{1}\right) p\left(x_{1}, x_{2}\right) \cdots p\left(x_{l-1}, x_{l}\right)\right\} \\
& =\sum_{k=1}^{l}\left[\sum_{x_{k} \in F} \Phi\left(x_{k}\right)\left\{\sum_{\left(x_{1}, x_{2}, \cdots, x_{k-1}\right) \in(\mathbb{S} \backslash F)^{k-1}} p\left(x_{0}, x_{1}\right) p\left(x_{1}, x_{2}\right) \cdots p\left(x_{k-1}, x_{k}\right)\right\}\right] \\
& +\sum_{x_{l} \in \mathbb{S} \backslash F} \Phi\left(x_{l}\right)\left\{\sum_{\left(x_{1}, x_{2}, \cdots, x_{l-1}\right) \in(\mathbb{S} \backslash F)^{l-1}} p\left(x_{0}, x_{1}\right) p\left(x_{1}, x_{2}\right) \cdots p\left(x_{l-1}, x_{l}\right)\right\},
\end{aligned}
$$

where the step (a) follows from the property (P1) of the function Φ, and this ends the proof of the bound
(12) for all $n \in \mathbb{N}$. So for any $n \in \mathbb{N}$,

$$
\begin{align*}
& \Phi\left(x_{0}\right) \geq \sum_{k=1}^{n}[\sum_{x_{k} \in F} \underbrace{\Phi\left(x_{k}\right)}_{\geq 1}\{\sum_{\left(x_{1}, x_{2}, \cdots, x_{k-1}\right) \in(\mathbb{S} \backslash F)^{k-1}} \underbrace{p\left(x_{0}, x_{1}\right) p\left(x_{1}, x_{2}\right) \cdots p\left(x_{k-1}, x_{k}\right)}_{=\mathbb{P}_{x_{0}}\left\{X_{1}=x_{1}, \cdots, X_{k-1}=x_{k-1}, X_{k}=x_{k}\right\}}\}] \\
& +\sum_{x_{n} \in \mathbb{S} \backslash F} \Phi\left(x_{n}\right)\left\{\sum_{\left(x_{1}, x_{2}, \cdots, x_{n-1}\right) \in(\mathbb{S} \backslash F)^{n-1}} p\left(x_{0}, x_{1}\right) p\left(x_{1}, x_{2}\right) \cdots p\left(x_{n-1}, x_{n}\right)\right\} \\
& \stackrel{(\mathrm{b})}{\geq} \sum_{k=1}^{n}\left[\sum_{x_{k} \in F}\left\{\sum_{\left(x_{1}, x_{2}, \cdots, x_{k-1}\right) \in(\mathbb{S} \backslash F)^{k-1}} \mathbb{P}_{x_{0}}\left\{X_{1}=x_{1}, \cdots, X_{k-1}=x_{k-1}, X_{k}=x_{k}\right\}\right\}\right] \tag{13}\\
& =\sum_{k=1}^{n} \mathbb{P}_{x_{0}}\left\{X_{1} \in \mathbb{S} \backslash F, \cdots, X_{k-1} \in \mathbb{S} \backslash F, X_{k} \in F\right\} \\
& \stackrel{(\mathrm{c})}{=} \sum_{k=1}^{n} \mathbb{P}_{x_{0}}\left\{V_{F}=k\right\} \\
& =\mathbb{P}_{x_{0}}\left\{V_{F} \leq n\right\},
\end{align*}
$$

where the above steps (b) and (c) are predicated on the following reasons:
(b) the property (P2) of the function Φ together with the equation (5.2.3) in [1];
(c) the definition of the first visiting time V_{F} to $F \subseteq \mathbb{S}$, and the assumption $x_{0} \in \mathbb{S} \backslash F$.

By letting $n \rightarrow \infty$ in the inequality (13), we finally obtain $\Phi\left(x_{0}\right) \geq \mathbb{P}_{x_{0}}\left\{V_{F}<+\infty\right\}$ for every $x_{0} \in \mathbb{S} \backslash F$. Furthermore, we know that $\Phi(x) \geq 1=\mathbb{P}_{x}\left\{V_{F}<+\infty\right\}$ for all $x \in F$, thereby it establishes our desired claim.

According to Claim 1, we know that

$$
\begin{equation*}
\varphi(x)=\delta \cdot \Phi(x) \geq \delta \cdot \mathbb{P}_{x}\left\{V_{F}<+\infty\right\}, \forall x \in \mathbb{S} . \tag{14}
\end{equation*}
$$

Since the superlevel set $\mathcal{L}_{\frac{\delta}{2}}^{+}(\varphi)=\left\{x \in \mathbb{S}: \varphi(x) \geq \frac{\delta}{2}\right\}$ is finite, its complement $\mathbb{S} \backslash \mathcal{L}_{\frac{\delta}{2}}^{+}(\varphi)$ is non-empty. Thus, we may take a state $y \in \mathbb{S}$ so that $\varphi(y)<\frac{\delta}{2}$. If follows that

$$
\begin{equation*}
\mathbb{P}_{y}\left\{V_{F}<+\infty\right\} \leq \frac{1}{\delta} \cdot \varphi(y)<\frac{1}{\delta} \cdot \frac{\delta}{2}=\frac{1}{2}, \tag{15}
\end{equation*}
$$

and so it's clear that $y \in \mathbb{S} \backslash F$. Now, we assume on the contrary that the Markov chain contains a recurrent state. Due to the irreducibility of the Markov chain, all states are recurrent by Theorem 5.3.2 in [1]. Also, we find from Theorem 5.3.2 in [1] that

$$
\rho_{y x}=\mathbb{P}_{y}\left\{T_{x}<+\infty\right\} \stackrel{(\mathrm{d})}{=} \mathbb{P}_{y}\left\{V_{x}<+\infty\right\}=1
$$

for every $x \in F$, where the step (d) holds since $y \in \mathbb{S} \backslash F$. As $V_{F} \leq V_{x}$ for $x \in F$, we arrive at $\mathbb{P}_{y}\left\{V_{F}<+\infty\right\}=$ 1 and this conclusion violates the inequality (15). Hence, all states in \mathbb{S} of the Markov chain is transient, i.e., the Markov chain $\left\{X_{n}\right\}_{n=0}^{\infty}$ is transient.

Problem 4 (Exercise 5.3.7. in [1]).
(\Rightarrow) : Assume that the homogeneous Markov chain $\left\{X_{n}\right\}_{n=0}^{\infty}$ with transition probability $p(\cdot, \cdot): \mathbb{S} \times \mathbb{S} \rightarrow$ $[0,1]$ is irreducible and recurrent. Let $f: \mathbb{S} \rightarrow \mathbb{R}_{+}$be any non-negative superharmonic function with respect to the transition probability $p(\cdot, \cdot): \mathbb{S} \times \mathbb{S} \rightarrow[0,1]$. According to the definition of superharmonic functions, the stochastic process $\left\{f\left(X_{n}\right)\right\}_{n=0}^{\infty}$ is a non-negative supermartingale with respect to the canonical filtration $\left\{\mathcal{F}_{n}:=\sigma\left(X_{0}, X_{1}, \cdots, X_{n}\right)\right\}_{n=0}^{\infty}$.

Choose any two states $x, y \in \mathbb{S}$. Since $\left\{X_{n}\right\}_{n=0}^{\infty}$ is an irreducible and recurrent Markov chain, we know that the state y is recurrent and $\rho_{y x}>0$. By Theorem 5.3.2 in [1], we obtain

$$
\begin{equation*}
\rho_{x y}=\mathbb{P}_{x}\left\{T_{y}<+\infty\right\}=1, \forall x, y \in \mathbb{S} . \tag{16}
\end{equation*}
$$

As the time of the first return to state $y, T_{y}=\inf \left\{n \geq 1: X_{n}=y\right\}$, is a stopping time with respect to the canonical filtration $\left\{\mathcal{F}_{n}\right\}_{n=0}^{\infty}$, the optional stopping theorem for non-negative supermartingales (Theorem 4.8.4. in [1]) yields

$$
\begin{align*}
f(x) & =\mathbb{E}_{x}\left[f\left(X_{0}\right)\right] \geq \mathbb{E}_{x}\left[f\left(X_{T_{y}}\right)\right] \\
& \stackrel{(\mathrm{a})}{=} \mathbb{E}_{x}\left[f\left(X_{T_{y}}\right) \mathbb{1}_{\left\{T_{y}<+\infty\right\}}\right] \\
& \stackrel{(\mathrm{b})}{=} \mathbb{E}_{x}\left[f(y) \cdot \mathbb{1}_{\left\{T_{y}<+\infty\right\}}\right] \tag{17}\\
& =f(y) \cdot \mathbb{P}_{x}\left\{T_{y}<+\infty\right\} \\
& \stackrel{(\mathrm{c})}{=} f(y),
\end{align*}
$$

where the above steps (a)-(c) can be justified as follows:
(a) the equation (16);
(b) if $T_{y}<+\infty$, then $X_{T_{y}}=y$;
(c) the equation (16).

Since the inequality (17) holds for every pair $(x, y) \in \mathbb{S} \times \mathbb{S}$ of states, we may conclude that the function f is constant on \mathbb{S}.
(\Leftarrow) : Conversely, we now assume that the homogeneous Markov chain $\left\{X_{n}\right\}_{n=0}^{\infty}$ with transition probability $p(\cdot, \cdot): \mathbb{S} \times \mathbb{S} \rightarrow[0,1]$ is irreducible and every non-negative superharmonic function with respect to the transition probability $p(\cdot, \cdot): \mathbb{S} \times \mathbb{S} \rightarrow[0,1]$ is constant. Given any fixed state $y \in \mathbb{S}$, we consider the first visiting time $V_{y}:=\inf \left\{n \geq 0: X_{n}=y\right\}$ to state y. Define a function $h: \mathbb{S} \rightarrow \mathbb{R}_{+}$by

$$
h(x):=\mathbb{P}_{x}\left\{V_{y}<+\infty\right\}, \forall x \in \mathbb{S} .
$$

It's clear from the definition of $h: \mathbb{S} \rightarrow \mathbb{R}_{+}$that $h(y)=1$. We claim that $h: \mathbb{S} \rightarrow \mathbb{R}_{+}$is a superharmonic function with respect to the transition probability $p(\cdot, \cdot)$. In order to prove this claim, we define a function $Y: \Omega_{0} \rightarrow \mathbb{R}$ by

$$
Y(\omega):=\mathbb{1}_{\left\{V_{y}<+\infty\right\}}(\omega)=\mathbb{1}_{\left\{X_{n}=y \text { for some } y \geq 0\right\}}(\omega), \forall \omega \in \Omega_{0} .
$$

It's clear that Y is a bounded measurable function on the sequence space $\left(\Omega_{0}, \mathcal{F}_{\infty}\right)$. Also, one can see that

$$
\begin{align*}
\left(Y \circ \theta_{1}\right)(\omega) & =\mathbb{1}_{\left\{X_{n}=y \text { for some } y \geq 0\right\}}\left(\theta_{1}(\omega)\right) \\
& =\mathbb{1}_{\left\{X_{n}=y \text { for some } y \geq 1\right\}}(\omega) \tag{18}\\
& \leq \mathbb{1}_{\left\{X_{n}=y \text { for some } y \geq 0\right\}}(\omega)=Y(\omega)
\end{align*}
$$

for every $\omega \in \Omega_{0}$. Thus,

$$
\begin{align*}
h(x) & =\mathbb{E}_{x}\left[\mathbb{1}_{\left\{V_{y}<+\infty\right\}}\right]=\mathbb{E}_{x}[Y] \\
& \stackrel{(\mathrm{d})}{\geq} \mathbb{E}_{x}\left[Y \circ \theta_{1}\right] \\
& =\mathbb{E}_{x}\left[\mathbb{E}_{x}\left[Y \circ \theta_{1} \mid \mathcal{F}_{1}\right]\right] \\
& \stackrel{(e)}{=} \mathbb{E}_{x}\left[\mathbb{E}_{X_{1}}[Y]\right] \\
& =\mathbb{E}_{x}\left[\sum_{z \in \mathbb{S}}\left(\mathbb{E}_{X_{1}}[Y] \cdot \mathbb{1}_{\left\{X_{1}=z\right\}}\right)\right] \\
& \stackrel{(\mathrm{f})}{=} \sum_{z \in \mathbb{S}} \mathbb{E}_{x}\left[\mathbb{E}_{X_{1}}[Y] \cdot \mathbb{1}_{\left\{X_{1}=z\right\}}\right] \tag{19}\\
& =\sum_{z \in \mathbb{S}} \mathbb{E}_{x}\left[\mathbb{E}_{z}[Y] \cdot \mathbb{1}_{\left\{X_{1}=z\right\}}\right] \\
& =\sum_{z \in \mathbb{S}} \mathbb{P}_{x}\left\{X_{1}=z\right\} \mathbb{E}_{z}[Y] \\
& =\sum_{z \in \mathbb{S}} p(x, z) h(z),
\end{align*}
$$

thereby $h: \mathbb{S} \rightarrow \mathbb{R}_{+}$is a non-negative superharmonic function with respect to the transition probability $p(\cdot, \cdot)$. Here, the above steps (d)-(f) can be verified as follows:
(d) it is simply the inequality (18);
(e) the Markov property (Theorem 5.2.3 in [1]);
(f) the Fubini-Tonelli's theorem, since the summands are non-negative.

Hence, h is a constant function on \mathbb{S}. Since we already know that $h(y)=1$, we can conclude that $h(x)=1$ for all $x \in \mathbb{S}$. As the fixed state $y \in \mathbb{S}$ is arbitrarily chosen, we obtain

$$
\begin{equation*}
\mathbb{P}_{x}\left\{V_{y}<+\infty\right\}=1 \tag{20}
\end{equation*}
$$

for all $x, y \in \mathbb{S}$.
Finally, we confirm that the Markov chain $\left\{X_{n}\right\}_{n=0}^{\infty}$ is recurrent. Fix any state $x \in \mathbb{S}$ and choose another state $y \in \mathbb{S} \backslash\{x\}$ arbitrarily. Due to (20), we have $\rho_{x y}=\mathbb{P}_{x}\left\{V_{y}<+\infty\right\}=1$ and $\rho_{y x}=\mathbb{P}_{y}\left\{V_{x}<+\infty\right\}=1$. Applying Problem 2 (Exercise 5.3.2 in [1]) gives $\rho_{x x} \geq \rho_{x y} \cdot \rho_{y x}=1$, so $\rho_{x x}=1$ for all $x \in \mathbb{S}$. Hence, all states in \mathbb{S} are recurrent, i.e., the transition probability $p(\cdot, \cdot)$ and the Markov chain $\left\{X_{n}\right\}_{n=0}^{\infty}$ are recurrent.

References

[1] Rick Durrett. Probability: theory and examples, volume 49. Cambridge university press, 2019.

