MAS651 Theory of Stochastic Processes Homework #2

20150597 Jeonghwan Lee

Department of Mathematical Sciences, KAIST

March 17, 2021

Throughout this homework, let \mathbb{Z}_+ denote the set of all non-negative integers, and $[a:b] := \{a, a + 1, \dots, b - 1, b\}$ for $a, b \in \mathbb{Z}$ with $a \leq b$. We also write [n] := [1:n] for $n \in \mathbb{N}$. Moreover, \biguplus denotes the *disjoint union*, and given a set A and $k \in \mathbb{Z}_+$, $\binom{A}{k} := \{B \subseteq A : |B| = k\}$. Also, we use the symbol \mathbb{S} instead of S to denote the underlying state space of stochastic processes.

Problem 1 (*Exercise 5.2.1.* in [1]).

To begin with, we introduce some notations: $\mathcal{F}_n := \sigma(\{X_k : k \in [0:n]\})$ and $\mathcal{G}_n := \sigma(\{X_k : k \ge n\})$ for $n \in \mathbb{Z}_+$. Given a fixed time step $n \in \mathbb{Z}_+$, and two events $A \in \mathcal{F}_n$ and $B \in \mathcal{G}_n$, we have $\mathbb{1}_{A \cap B} = \mathbb{1}_A \mathbb{1}_B$, we obtain

$$\mathbb{P}_{\mu} \{ A \cap B | X_n \} = \mathbb{E}_{\mu} [\mathbb{1}_{A \cap B} | \sigma(X_n)]$$

$$= \mathbb{E}_{\mu} [\mathbb{1}_A \mathbb{1}_B | \sigma(X_n)]$$

$$\stackrel{(a)}{=} \mathbb{E}_{\mu} [\mathbb{E}_{\mu} [\mathbb{1}_A \mathbb{1}_B | \mathcal{F}_n] | \sigma(X_n)]$$

$$\stackrel{(b)}{=} \mathbb{E}_{\mu} [\mathbb{1}_A \cdot \mathbb{E}_{\mu} [\mathbb{1}_B | \mathcal{F}_n] | \sigma(X_n)]$$

$$(1)$$

 \mathbb{P}_{μ} -almost surely, where the step (a) follows from *Theorem 4.1.13* in [1], and the step (b) holds by *Theorem 4.1.14* in [1] together with the fact $A \in \mathcal{F}_n$.

Claim 1. For any $B \in \mathcal{G}_n$, $\mathbb{E}_{\mu} [\mathbb{1}_B | \mathcal{F}_n]$ is $\sigma(X_n)$ -measurable.

Proof of Claim 1.

Let $\mathcal{P}_k := \{\{\omega \in \Omega_0 : \omega_n \in A_0, \omega_{n+1} \in A_1, \cdots, \omega_{n+k} \in A_k\} : A_0, A_1, \cdots, A_k \in \mathcal{S}\}, k \in \mathbb{Z}_+, \text{ where } (\mathbb{S}, \mathcal{S}) \text{ is the underlying nice state space and } (\Omega_0, \mathcal{F}_\infty) \text{ denotes the sequence space constructed from } (\mathbb{S}, \mathcal{S}). \text{ Here,} we recall that a measurable space } (\mathbb{S}, \mathcal{S}) \text{ is nice } (\text{or said to be a standard Borel space}) \text{ if there is a bijection } \varphi : \mathbb{S} \to \mathbb{R} \text{ such that both } \varphi : (\mathbb{S}, \mathcal{S}) \to (\mathbb{R}, \mathcal{B}(\mathbb{R})) \text{ and } \varphi^{-1} : (\mathbb{R}, \mathcal{B}(\mathbb{R})) \to (\mathbb{S}, \mathcal{S}) \text{ are measurable, where } \mathcal{B}(\mathbb{R}) \text{ denotes the Borel } \sigma\text{-field on } \mathbb{R} \text{ (See Section 2.1 of [1] for further details). Set } \mathcal{P} := \bigcup_{k=0}^{\infty} \mathcal{P}_k. \text{ Choose any two elements } C, D \in \mathcal{P}. \text{ Then, } C \in \mathcal{P}_k \text{ and } D \in \mathcal{P}_l \text{ for some } k, l \in \mathbb{Z}_+. \text{ We may write } C \text{ and } D \text{ by}$

$$C = \{\omega \in \Omega_0 : \omega_n \in A_0, \omega_{n+1} \in A_1, \cdots, \omega_{n+k} \in A_k\};$$
$$D = \{\omega \in \Omega_0 : \omega_n \in B_0, \omega_{n+1} \in B_1, \cdots, \omega_{n+l} \in B_l\},$$

for some $A_0, A_1, \dots, A_k, B_0, B_1, \dots, B_l \in S$. Assuming $k \leq l$, we have

$$C \cap D = \{ \omega \in \Omega_0 : \omega_n \in A_0 \cap B_0, \cdots, \omega_{n+k} \in A_k \cap B_k, \omega_{n+k+1} \in B_{k+1}, \cdots, \omega_{n+l} \in B_l \} \in \mathcal{P}_l,$$

thereby $C \cap D \in \mathcal{P}$. Thus, \mathcal{P} is a π -system on Ω_0 with $\mathcal{G}_n = \sigma(\mathcal{P})$.

Now, choose any $E \in \mathcal{P}$. Then, it can be written as

$$E = \{ \omega \in \Omega_0 : \omega_n \in A_0, \omega_{n+1} \in A_1, \cdots, \omega_{n+k} \in A_k \}$$

for some $k \in \mathbb{Z}_+$ and $A_0, A_1, \dots, A_k \in S$. Define a function $Y : \Omega_0 \to \mathbb{R}$ by

$$Y(\omega) := \prod_{j=0}^{k} \mathbb{1}_{A_{j}}(\omega_{j}), \ \omega \in \Omega_{0}.$$

It's clear that Y is a bounded measurable function from the sequence space $(\Omega_0, \mathcal{F}_\infty)$ to $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$. Moreover, one can see that

$$\mathbb{1}_{E}(\omega) = \prod_{j=0}^{k} \mathbb{1}_{A_{j}}(\omega_{n+j}) = \prod_{j=0}^{k} \mathbb{1}_{A_{j}}\left(\left[\theta_{n}(\omega)\right]_{j}\right) = \left(Y \circ \theta_{n}\right)(\omega)$$

$$\tag{2}$$

for all $\omega \in \Omega_0$. Therefore,

$$\mathbb{E}_{\mu}\left[\mathbb{1}_{E} | \mathcal{F}_{n}\right] \stackrel{\text{(c)}}{=} \mathbb{E}_{\mu}\left[Y \circ \theta_{n} | \mathcal{F}_{n}\right] \stackrel{\text{(d)}}{=} \mathbb{E}_{X_{n}}\left[Y\right]$$
(3)

 \mathbb{P}_{μ} -almost surely, where the step (c) is due to (2), and the step (d) follows from the Markov property. Since the last term of (3) is $\sigma(X_n)$ -measurable, we conclude that $\mathbb{E}_{\mu}[\mathbb{1}_E | \mathcal{F}_n]$ is $\sigma(X_n)$ -measurable for all $E \in \mathcal{P}$.

As the final step, we show that $\mathbb{E}_{\mu}[\mathbb{1}_{B}|\mathcal{F}_{n}]$ is $\sigma(X_{n})$ -measurable for all $B \in \mathcal{G}_{n}$. Let

$$\mathcal{L} := \{ B \in \mathcal{G}_n : \mathbb{E}_{\mu} [\mathbb{1}_B | \mathcal{F}_n] \text{ is } \sigma(X_n) \text{-measurable.} \}.$$

We have already seen that $\mathcal{P} \subseteq \mathcal{L}$ in the previous paragraph. Now, we claim that \mathcal{L} is a λ -system on Ω_0 .

- 1. It's clear that \emptyset and Ω_0 belongs to \mathcal{L} ;
- 2. Assume that $A, B \in \mathcal{L}$. Then,

$$\mathbb{E}_{\mu}\left[\mathbb{1}_{B\setminus A} \middle| \mathcal{F}_{n}\right] \stackrel{\mathbb{P}_{\mu}\text{-a.s.}}{=} \mathbb{E}_{\mu}\left[\mathbb{1}_{B} \middle| \mathcal{F}_{n}\right] - \mathbb{E}_{\mu}\left[\mathbb{1}_{A} \middle| \mathcal{F}_{n}\right]$$

is also $\sigma(X_n)$ -measurable, thereby $B \setminus A \in \mathcal{L}$;

3. Let $\{A_k\}_{k=1}^{\infty}$ be a sequence in \mathcal{L} with $A_k \uparrow A$ as $k \to \infty$. From $\mathbb{1}_{A_k} \uparrow \mathbb{1}_A$ as $k \to \infty$, we obtain from the monotone convergence theorem for conditional expectations (*Theorem 4.1.9-(c)* in [1]) that

$$\mathbb{E}_{\mu}\left[\left.\mathbb{1}_{A_{k}}\right|\mathcal{F}_{n}\right]\uparrow\mathbb{E}_{\mu}\left[\left.\mathbb{1}_{A}\right|\mathcal{F}_{n}\right]$$

 \mathbb{P}_{μ} -almost surely, as $k \to \infty$. Since each $\mathbb{E}_{\mu}[\mathbb{1}_{A_k} | \mathcal{F}_n]$ is $\sigma(X_n)$ -measurable, $\mathbb{E}_{\mu}[\mathbb{1}_A | \mathcal{F}_n]$ is also $\sigma(X_n)$ -measurable.

From the above observations, \mathcal{L} is a λ -system on Ω_0 . Due to the π - λ theorem (*Theorem 2.1.6* in [1]), we get $\mathcal{L} = \sigma(\mathcal{P}) = \mathcal{G}_n$. This completes the proof of Claim 1.

According to Claim 1, we know that $\mathbb{E}_{\mu}[\mathbb{1}_{B}|\mathcal{F}_{n}]$ is $\sigma(X_{n})$ -measurable. Thus,

$$\mathbb{E}_{\mu}\left[\mathbbm{1}_{B}|\mathcal{F}_{n}\right] \stackrel{\mathbb{P}_{\mu}\text{-a.s.}}{=} \mathbb{E}_{\mu}\left[\mathbbm{1}_{B}|\sigma(X_{n})\right] \tag{4}$$

by Theorem 4.1.12 in [1]. Plugging (4) into (1) yields

$$\mathbb{P}_{\mu} \{ A \cap B | X_n \} = \mathbb{E}_{\mu} [\mathbbm{1}_A \cdot \mathbb{E}_{\mu} [\mathbbm{1}_B | \mathcal{F}_n] | \sigma(X_n)] \\ = \mathbb{E}_{\mu} [\mathbbm{1}_A \cdot \mathbb{E}_{\mu} [\mathbbm{1}_B | \sigma(X_n)] | \sigma(X_n)] \\ \stackrel{(e)}{=} \mathbb{E}_{\mu} [\mathbbm{1}_A | \sigma(X_n)] \mathbb{E}_{\mu} [\mathbbm{1}_B | \sigma(X_n)] \\ = \mathbb{P}_{\mu} \{ A | X_n \} \mathbb{P}_{\mu} \{ B | X_n \}$$

 \mathbb{P}_{μ} -almost surely, where the step (e) is due to *Theorem 4.1.14* in [1], and we are done.

Hereafter, we assume throughout the rest of homework problems that the underlying state space S is countable and it is equipped with the discrete σ -field $2^{\mathbb{S}}$. Since $(\mathbb{S}, 2^{\mathbb{S}})$ is a *nice measurable space*, it admits the canonical construction in *Section 5.2* in [1] of the probability measure \mathbb{P}_{μ} on the sequence space $(\Omega_0, \mathcal{F}_{\infty})$ so that the sequence of coordinate maps $\{X_n(\omega) := \omega_n\}_{n=0}^{\infty}$ is a homogeneous Markov chain with initial distribution μ and transition probability $p(\cdot, \cdot) : \mathbb{S} \times 2^{\mathbb{S}} \to [0, 1]$. We remark that it is conventional to write $p(x, y) := p(x, \{y\})$ for $x, y \in \mathbb{S}$.

Problem 2 (Exercise 5.2.4. in [1]: First entrance decomposition).

We begin the proof by defining the functions $Y_m: \Omega_0 \to \mathbb{R}, m \in \mathbb{Z}_+$, by

$$Y_m(\omega) := \mathbb{1}_{\{X_{n-m}=y\}}(\omega) = \mathbb{1}_{\{\omega_{n-m}=y\}}, \ \forall \omega \in \Omega_0,$$

if $0 \le m \le n$, and $Y_m(\omega) := 0$ for all $\omega \in \Omega_0$ otherwise. It's clear that all Y_m are bounded and measurable functions on the sequence space $(\Omega_0, \mathcal{F}_\infty)$. Also, according to the definition of the *hitting time* T_y , we have

$$\{T_y = n\} = \{X_1 \in \mathbb{S} \setminus \{y\}, \cdots, X_{n-1} \in \mathbb{S} \setminus \{y\}, X_n = y\} \in \mathcal{F}_n$$

for every $n \in \mathbb{Z}_+$, where $\{\mathcal{F}_n := \sigma(\{X_k : k \in [0:n]\})\}_{n=0}^{\infty}$ denotes the canonical filtration of $\{X_n\}_{n=0}^{\infty}$. Thus, T_y is a stopping time with respect to the canonical filtration $\{\mathcal{F}_n\}_{n=0}^{\infty}$. Moreover, one can see that if $T_y(\omega) < +\infty$, then

$$\left(Y_{T_y} \circ \theta_{T_y}\right)(\omega) = \mathbb{1}_{\{X_n = y\}}(\omega), \ \forall \omega \in \Omega_0.$$
(5)

Hence, we have

$$p^{n}(x,y) = \mathbb{P}_{x} \{X_{n} = y\} = \mathbb{E}_{x} \lfloor \mathbb{1}_{\{X_{n}=y\}} \rfloor$$

$$\stackrel{(a)}{=} \mathbb{E}_{x} \left[\mathbb{1}_{\{X_{n}=y\}} \cdot \mathbb{1}_{\{T_{y} < +\infty\}}\right]$$

$$\stackrel{(b)}{=} \mathbb{E}_{x} \left[(Y_{T_{y}} \circ \theta_{T_{y}}) \cdot \mathbb{1}_{\{T_{y} < +\infty\}}\right]$$

$$= \mathbb{E}_{x} \left[\mathbb{E}_{x} \left[(Y_{T_{y}} \circ \theta_{T_{y}}) \cdot \mathbb{1}_{\{T_{y} < +\infty\}}\right] \mathcal{F}_{T_{y}}\right] \mathbb{1}_{\{T_{y} < +\infty\}}\right]$$

$$\stackrel{(c)}{=} \mathbb{E}_{x} \left[\mathbb{E}_{x} \left[\mathbb{E}_{X_{T_{y}}} \left[Y_{T_{y}}\right] \cdot \mathbb{1}_{\{T_{y} < +\infty\}}\right]$$

$$\stackrel{(e)}{=} \mathbb{E}_{x} \left[\mathbb{E}_{y} \left[Y_{T_{y}}\right] \cdot \mathbb{1}_{\{T_{y} < +\infty\}}\right]$$

$$= \mathbb{E}_{x} \left[\sum_{m=0}^{\infty} \mathbb{E}_{y} \left[Y_{T_{y}}\right] \cdot \mathbb{1}_{\{T_{y} = m\}}\right]$$

$$\stackrel{(f)}{=} \sum_{m=0}^{\infty} \mathbb{E}_{x} \left[\mathbb{E}_{y} \left[Y_{T_{y}}\right] \cdot \mathbb{1}_{\{T_{y} = m\}}\right]$$

$$= \sum_{m=0}^{\infty} \mathbb{E}_{y} \left[Y_{m}\right] \cdot \mathbb{E}_{x} \left[\mathbb{1}_{\{T_{y} = m\}}\right]$$

$$= \sum_{m=0}^{\infty} \mathbb{E}_{x} \left\{T_{y} = m\right\} \underbrace{\mathbb{P}_{y} \{X_{n-m} = y\}}_{= p^{n-m}(y,y)}.$$

Here, the above steps (a)-(f) can be justified as follows:

- (a) $\{X_n = y\} \subseteq \{T_y < +\infty\};$
- (b) the equality (5);
- (c) $\{T_y < +\infty\} \in \mathcal{F}_{T_y}$. To see this, we notice that

$$\{T_y < +\infty\} \cap \{T_y = n\} = \{T_y = n\} \in \mathcal{F}_n, \ \forall n \in \mathbb{Z}_+,$$

since T_y is a stopping time with respect to the filtration $\{\mathcal{F}_n\}_{n=0}^{\infty}$;

- (d) the strong Markov property (*Theorem 5.2.5* in [1]);
- (e) On the event $\{T_y < +\infty\}$, we have $X_{T_y} = y$;
- (f) the Fubini-Tonelli's theorem, since the summands are non-negative.

This establishes the desired result.

Problem 3 (*Exercise 5.2.6.* in [1]).

Since $\mathbb{S} \setminus C$ is finite, $\inf \{\mathbb{P}_x \{T_C < +\infty\} : x \in \mathbb{S} \setminus C\} > 0$. Take $\epsilon := \frac{1}{2} \inf \{\mathbb{P}_x \{T_C < +\infty\} : x \in \mathbb{S} \setminus C\} \in (0,1)$. As $\mathbb{P}_x \{T_C < +\infty\} = \lim_{n \to \infty} \uparrow \mathbb{P}_x \{T_C \le n\} > \epsilon$ for every $x \in \mathbb{S} \setminus C$, there exists a positive integer $N(x) \in \mathbb{N}$ such that $\mathbb{P}_x \{T_C \le n\} \ge \epsilon$ for every $n \ge N(x)$. Let $N := \max \{N(x) : x \in \mathbb{S} \setminus C\} \in \mathbb{N}$. Then, we have

$$\mathbb{P}_x\left\{T_C > N\right\} = 1 - \mathbb{P}_x\left\{T_C \le N\right\} \le 1 - \epsilon \tag{6}$$

for every $x \in \mathbb{S} \setminus C$, since $N \ge N(x)$ for all $x \in \mathbb{S} \setminus C$.

Now, define $Y: \Omega_0 \to \mathbb{R}$ by

$$Y(\omega) := \mathbb{1}_{\{T_C > N\}}(\omega) = \mathbb{1}_{\bigcap_{i=1}^N \{X_i \in \mathbb{S} \setminus C\}}(\omega), \ \forall \omega \in \Omega_0.$$

Then, Y is clearly a bounded, measurable function from the sequence space $(\Omega_0, \mathcal{F}_{\infty})$ to $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$. Moreover, we can see that for every $k \geq 2$,

$$\left(Y \circ \theta_{(k-1)N}\right)(\omega) = \mathbb{1}_{\bigcap_{i=(k-1)N+1}^{kN} \{X_i \in \mathbb{S} \setminus C\}}(\omega), \forall \omega \in \Omega_0,$$

thereby we get

$$\left(Y \circ \theta_{(k-1)N} \right) (\omega) \cdot \mathbb{1}_{\{T_C > (k-1)N\}} (\omega) = \mathbb{1}_{\{T_C > (k-1)N, \ X_{(k-1)N+1} \in \mathbb{S} \setminus C, \ X_{(k-1)N+2} \in \mathbb{S} \setminus C, \ \dots, \ X_{kN} \in \mathbb{S} \setminus C \}} (\omega)$$

$$= \mathbb{1}_{\bigcap_{i=1}^{kN} \{X_i \in \mathbb{S} \setminus C\}} (\omega)$$

$$= \mathbb{1}_{\{T_C > kN\}} (\omega)$$

$$(7)$$

for all $\omega \in \Omega_0$. Therefore, we obtain for every $y \in \mathbb{S} \setminus C$ and $k \ge 2$ that

$$\begin{split} \mathbb{P}_{y} \left\{ T_{C} > kN \right\} &= \mathbb{E}_{y} \left[\mathbb{1}_{\{T_{C} > kN\}} \right] \\ &\stackrel{(a)}{=} \mathbb{E}_{y} \left[\mathbb{E}_{y} \left[\left(Y \circ \theta_{(k-1)N} \right) \cdot \mathbb{1}_{\{T_{C} > (k-1)N\}} \right] \mathcal{F}_{(k-1)N} \right] \right] \\ &= \mathbb{E}_{y} \left[\mathbb{E}_{y} \left[\mathbb{E}_{y} \left[Y \circ \theta_{(k-1)N} \right] \cdot \mathbb{1}_{\{T_{C} > (k-1)N\}} \right] \mathcal{F}_{(k-1)N} \right] \right] \\ &\stackrel{(b)}{=} \mathbb{E}_{y} \left[\mathbb{E}_{X_{(k-1)N}} \left[Y \right] \cdot \mathbb{1}_{\{T_{C} > (k-1)N\}} \right] \\ &\stackrel{(c)}{=} \mathbb{E}_{y} \left[\mathbb{E}_{X_{(k-1)N}} \left[Y \right] \cdot \mathbb{1}_{\{T_{C} > (k-1)N\}} \right] \\ &\stackrel{(d)}{=} \mathbb{E}_{y} \left[\mathbb{E}_{X_{(k-1)N}} \left[Y \right] \cdot \mathbb{1}_{\{T_{C} > (k-1)N, X_{(k-1)N} = x\}} \right] \right] \\ &= \mathbb{E}_{y} \left[\mathbb{E}_{X_{(k-1)N}} \left[Y \right] \left\{ \sum_{x \in \mathbb{S} \setminus C} \mathbb{1}_{\{T_{C} > (k-1)N, X_{(k-1)N} = x\}} \right] \\ &= \sum_{x \in \mathbb{S} \setminus C} \mathbb{E}_{y} \left[\mathbb{E}_{x} \left[Y \right] \cdot \mathbb{1}_{\{T_{C} > (k-1)N, X_{(k-1)N} = x\}} \right] \\ &= \sum_{x \in \mathbb{S} \setminus C} \mathbb{E}_{y} \left[\mathbb{1}_{\{T_{C} > (k-1)N, X_{(k-1)N} = x\}} \right] \\ &= \sum_{x \in \mathbb{S} \setminus C} \mathbb{E}_{y} \left[\mathbb{1}_{\{T_{C} > (k-1)N, X_{(k-1)N} = x\}} \right] \\ &= \sum_{x \in \mathbb{S} \setminus C} \mathbb{E}_{y} \left[\mathbb{1}_{\{T_{C} > (k-1)N, X_{(k-1)N} = x\}} \right] \\ &= (1 - \epsilon) \mathbb{E}_{y} \left[\mathbb{1}_{\{T_{C} > (k-1)N, X_{(k-1)N} = x\}} \right] \\ &= (1 - \epsilon) \mathbb{E}_{y} \left[\mathbb{1}_{\{T_{C} > (k-1)N, X_{(k-1)N} = x\}} \right] \\ &= (1 - \epsilon) \mathbb{E}_{y} \left[\mathbb{1}_{\{T_{C} > (k-1)N, X_{(k-1)N} \in \mathbb{S} \setminus C} \right] \\ &\stackrel{(b)}{=} (1 - \epsilon) \mathbb{E}_{y} \left[\mathbb{1}_{\{T_{C} > (k-1)N\}} \right] \\ &= (1 - \epsilon) \mathbb{E}_{y} \left[\mathbb{1}_{\{T_{C} > (k-1)N\}} \right] \end{aligned}$$

Here, the above steps (a)–(h) can be justified as follows:

- (a) the equality (7);
- (b) $\{T_C > (k-1)N\} = \bigcap_{i=1}^{(k-1)N} \{X_i \in \mathbb{S} \setminus C\} \in \mathcal{F}_{(k-1)N};$
- (c) the Markov property (*Theorem 5.2.3* in [1]);

(d)
$$\{T_C > (k-1)N\} \subseteq \{X_{(k-1)N} \in \mathbb{S} \setminus C\};\$$

- (e) we can change the order between expectation and summation since $\mathbb{S} \setminus C$ is finite;
- (f) the bound (6);
- (g) we can change the order between expectation and summation since $\mathbb{S} \setminus C$ is finite;
- (h) $\{T_C > (k-1)N\} \subseteq \{X_{(k-1)N} \in \mathbb{S} \setminus C\}.$

We remark that $\{\mathcal{F}_n\}_{n=0}^{\infty}$ denotes the canonical filtration of the given Markov chain $\{X_n\}_{n=0}^{\infty}$, *i.e.*, $\mathcal{F}_n := \sigma(X_0, X_1, \cdots, X_n)$ for every $n \in \mathbb{Z}_+$. Hence, we can deduce inductively that

$$\mathbb{P}_y\left\{T_C > kN\right\} \le (1-\epsilon)^{k-1} \cdot \mathbb{P}_y\left\{T_C > N\right\} \stackrel{(i)}{\le} (1-\epsilon)^k$$

for every $k \in \mathbb{N}$ and $y \in \mathbb{S} \setminus C$, where the step (i) is simply the bound (6). This completes the proof of the desired result.

Problem 4 (Exercise 5.2.7. in [1]: Exit distributions).

(i) To begin with, we can see for every $C \subseteq S$ that the first visiting time to C, V_C , is a stopping time with respect to the canonical filtration $\{\mathcal{F}_n := \sigma (X_0, X_1, \cdots, X_n)\}_{n=0}^{\infty}$. To see this, we notice that

$$\{V_C = n\} = \{X_0 \in \mathbb{S} \setminus C, \cdots, X_{n-1} \in \mathbb{S} \setminus C, X_n \in C\} \in \mathcal{F}_n, \ \forall n \in \mathbb{Z}_+$$

Now, we define a function $Y: \Omega_0 \to \mathbb{R}$ by

$$Y(\omega) := \mathbb{1}_{\{V_A < V_B\}}(\omega) = \begin{cases} 1 & \text{if inf } \{n \ge 0 : X_n \in A\} < \inf \{n \ge 0 : X_n \in B\}; \\ 0 & \text{otherwise.} \end{cases}$$

Since both V_A and V_B are stopping times with respect to $\{\mathcal{F}_n\}_{n=0}^{\infty}$ defined on the sequence space $(\Omega_0, \mathcal{F}_{\infty})$, $\{V_A < V_B\} \in \mathcal{F}_{\infty}$. Thus, $Y : (\Omega_0, \mathcal{F}_{\infty}) \to (\mathbb{R}, \mathcal{B}(\mathbb{R}))$ is a bounded, measurable function, where $\mathcal{B}(\mathbb{R})$ denotes the Borel σ -field on \mathbb{R} . Moreover, we may observe that if $X_0 \in \mathbb{S} \setminus (A \cup B)$, then

$$(Y \circ \theta_1)(\omega) = \begin{cases} 1 & \text{if inf } \{n \ge 1 : X_n \in A\} < \inf \{n \ge 1 : X_n \in B\}; \\ 0 & \text{otherwise.} \end{cases}$$
$$= \begin{cases} 1 & \text{if inf } \{n \ge 0 : X_n \in A\} < \inf \{n \ge 0 : X_n \in B\}; \\ 0 & \text{otherwise.} \end{cases}$$
$$= Y(\omega)$$
(8)

for all $\omega \in \Omega_0$. Hence, the following holds: for every $x \in \mathbb{S} \setminus (A \cup B)$,

$$h(x) = \mathbb{P}_{x} \{ V_{A} < V_{B} \} = \mathbb{E}_{x} [Y]$$

$$\stackrel{(a)}{=} \mathbb{E}_{x} [Y \circ \theta_{1}]$$

$$= \mathbb{E}_{x} [\mathbb{E}_{x} [Y \circ \theta_{1} | \mathcal{F}_{1}]]$$

$$\stackrel{(b)}{=} \mathbb{E}_{x} [\mathbb{E}_{x} [Y \circ \theta_{1} | \mathcal{F}_{1}]]$$

$$= \mathbb{E}_{x} \left[\sum_{y \in \mathbb{S}} \mathbb{E}_{x} [Y] \cdot \mathbb{1}_{\{X_{1}=y\}} \right]$$

$$\stackrel{(c)}{=} \sum_{y \in \mathbb{S}} \mathbb{E}_{x} \left[\mathbb{E}_{X_{1}} [Y] \cdot \mathbb{1}_{\{X_{1}=y\}} \right]$$

$$= \sum_{y \in \mathbb{S}} \mathbb{E}_{x} \left[\mathbb{E}_{y} [Y] \cdot \mathbb{1}_{\{X_{1}=y\}} \right]$$

$$= \sum_{y \in \mathbb{S}} \mathbb{E}_{x} \left[\mathbb{E}_{x} [X_{1} = y] \cdot \mathbb{P}_{y} \{ V_{A} < V_{B} \} \right]$$

$$= \sum_{y \in \mathbb{S}} p(x, y)h(y),$$

Here, the above steps (a)–(c) can be verified as follows:

- (a) it follows from (8) together with the assumption $x \in \mathbb{S} \setminus (A \cup B)$;
- (b) the Markov property (*Theorem 5.2.3* in [1]);
- (c) the Fubini-Tonelli's theorem, since the summands are non-negative.

(ii) Let μ denote the initial distribution of the Markov chain $\{X_n\}_{n=0}^{\infty}$, $h : \mathbb{S} \to \mathbb{R}$ be any bounded function satisfying the given condition (*), and $M_n := h(X_{n \wedge V_{A \cup B}})$ for $n \in \mathbb{Z}_+$. Then, one can see that for $n \in \mathbb{N}$,

$$M_{n} = h(X_{n})\mathbb{1}_{\{V_{A\cup B} \ge n\}} + h(X_{V_{A\cup B}})\mathbb{1}_{\{V_{A\cup B} < n\}}$$

= $h(X_{n})\mathbb{1}_{\{V_{A\cup B} \ge n\}} + \sum_{k=0}^{n-1} h(X_{V_{A\cup B}})\mathbb{1}_{\{V_{A\cup B} = k\}}.$ (9)

It's clear that $M_n \in L^1(\Omega_0, \mathcal{F}_\infty, \mathbb{P}_\mu)$, *i.e.*, M_n is \mathbb{P}_μ -integrable as h is bounded. From (9), we reach

$$\mathbb{E}_{\mu} [M_{n} | \mathcal{F}_{n-1}] = \mathbb{E}_{\mu} \left[h(X_{n}) \mathbb{1}_{\{V_{A \cup B} \ge n\}} | \mathcal{F}_{n-1} \right] + \sum_{k=0}^{n-1} \mathbb{E}_{\mu} \left[h(X_{V_{A \cup B}}) \mathbb{1}_{\{V_{A \cup B} = k\}} | \mathcal{F}_{n-1} \right]$$

$$= \mathbb{E}_{\mu} \left[h(X_{n}) \mathbb{1}_{\{V_{A \cup B} \ge n\}} | \mathcal{F}_{n-1} \right] + \sum_{k=0}^{n-1} \mathbb{E}_{\mu} \left[h(X_{k}) \mathbb{1}_{\{V_{A \cup B} = k\}} | \mathcal{F}_{n-1} \right]$$

$$\stackrel{(d)}{=} \mathbb{E}_{\mu} \left[h(X_{n}) \mathbb{1}_{\{V_{A \cup B} \ge n\}} | \mathcal{F}_{n-1} \right] + \sum_{k=0}^{n-1} h(X_{k}) \mathbb{1}_{\{V_{A \cup B} = k\}},$$
(10)

 \mathbb{P}_{μ} -almost surely, where the step (a) follows from the fact $h(X_k)\mathbb{1}_{\{V_{A\cup B}=k\}} \in \mathcal{F}_k \subseteq \mathcal{F}_{n-1}$ for every $k \in [0: n-1]$, which holds since $V_{A\cup B}$ is a stopping time with respect to the canonical filtration $\{\mathcal{F}_n\}_{n=0}^{\infty}$. At this point, we claim the following statement.

Claim 2. $\mathbb{E}_{\mu}\left[h(X_n)\mathbb{1}_{\{V_{A\cup B}\geq n\}}\middle|\mathcal{F}_{n-1}\right] \stackrel{\mathbb{P}_{\mu}\text{-a.s.}}{=} h(X_{n-1})\mathbb{1}_{\{V_{A\cup B}\geq n\}}.$

Proof of Claim 2.

To begin with, we note from $\{V_{A\cup B} \ge k\} = \{X_0 \in \mathbb{S} \setminus (A \cup B), X_1 \in \mathbb{S} \setminus (A \cup B), \cdots, X_{k-1} \in \mathbb{S} \setminus (A \cup B)\}$ that

$$\mathbb{1}_{\{V_{A\cup B} \ge k\}}(\omega) = \prod_{j=0}^{k-1} \mathbb{1}_{\mathbb{S}\setminus(A\cup B)}(\omega_j)$$
(11)

for all $\omega \in \Omega_0$ and $k \in \mathbb{N}$. Let $\mathcal{P}_k := \{\{\omega \in \Omega_0 : \omega_0 \in A_0, \omega_1 \in A_1, \cdots, \omega_k \in A_k\} : A_0, A_1, \cdots, A_k \in \mathcal{S} = 2^{\mathbb{S}}\}$ for $k \in \mathbb{Z}_+$. Then, \mathcal{P}_k is a π -system on Ω_0 with $\mathcal{F}_k = \sigma(X_0, X_1, \cdots, X_k) = \sigma(\mathcal{P}_k)$. Firstly, we claim that

 $\mathbb{E}_{\mu}\left[h(X_n)\mathbb{1}_{\{V_{A\cup B}\geq n\}}\cdot\mathbb{1}_E\right] = \mathbb{E}_{\mu}\left[h(X_{n-1})\mathbb{1}_{\{V_{A\cup B}\geq n\}}\cdot\mathbb{1}_E\right]$ (12)

for all $E \in \mathcal{P}_{n-1}$. Given any $E \in \mathcal{P}_{n-1}$, it can be written by

$$E = \{X_0 \in A_0, X_1 \in A_1, \cdots, X_{n-1} \in A_{n-1}\}\$$

for some $A_0, A_1, \dots, A_{n-1} \in \mathcal{S} = 2^{\mathbb{S}}$. Therefore,

$$\begin{split} \mathbb{E}_{\mu} \left[h(X_{n}) \mathbb{1}_{\{V_{A \cup B} \geq n\}} \cdot \mathbb{1}_{E} \right] \stackrel{(e)}{=} \mathbb{E}_{\mu} \left[\prod_{k=0}^{n-1} \left(\mathbb{1}_{\{\mathbb{S} \setminus \{A \cup B\}\} \cap A_{k}}(X_{k}) \right) h(X_{n}) \right] \\ & \stackrel{(f)}{=} \int_{\mathbb{S}} \mu(dx_{0}) \mathbb{1}_{\{\mathbb{S} \setminus \{A \cup B\}\} \cap A_{0}}(x_{0}) \left[\int_{\mathbb{S}} p(x_{0}, dx_{1}) \mathbb{1}_{\{\mathbb{S} \setminus \{A \cup B\}\} \cap A_{1}}(x_{1}) \\ \left[\cdots \left[\int_{\mathbb{S}} p(x_{n-1}, dx_{n}) h(x_{n}) \right] \cdots \right] \right] \right] \\ &= \sum_{x_{0} \in \{\mathbb{S} \setminus \{A \cup B\}\} \cap A_{0}} \mu(x_{0}) \left[\sum_{x_{1} \in \{\mathbb{S} \setminus \{A \cup B\}\} \cap A_{1}} p(x_{0}, x_{1}) \\ \left[\cdots \left[\sum_{x_{n-1} \in \{\mathbb{S} \setminus \{A \cup B\}\} \cap A_{0}} \mu(x_{0}) \left[\sum_{x_{1} \in \{\mathbb{S} \setminus \{A \cup B\}\} \cap A_{1}} p(x_{0}, x_{1}) \\ \left[\cdots \left[\sum_{x_{n-1} \in \{\mathbb{S} \setminus \{A \cup B\}\} \cap A_{0}} \mu(x_{0}) \left[\sum_{x_{1} \in \{\mathbb{S} \setminus \{A \cup B\}\} \cap A_{1}} p(x_{0}, x_{1}) \\ \left[\cdots \left[\sum_{x_{n-1} \in \{\mathbb{S} \setminus \{A \cup B\}\} \cap A_{0}} \mu(x_{0}) \left[\sum_{x_{1} \in \{\mathbb{S} \setminus \{A \cup B\}\} \cap A_{1}} p(x_{0}, x_{1}) \\ \left[\cdots \left[\sum_{x_{n-1} \in \{\mathbb{S} \setminus \{A \cup B\}\} \cap A_{0}} p(x_{0}) \left[\int_{\mathbb{S}} p(x_{0}, dx_{1}) \mathbb{1}_{\{\mathbb{S} \setminus \{A \cup B\}\} \cap A_{1}}(x_{1}) \\ \left[\cdots \left[\int_{\mathbb{S}} p(x_{n-2}, dx_{n-1}) h(x_{n-1}) \mathbb{1}_{\{\mathbb{S} \setminus \{A \cup B\}\} \cap A_{n-1}}(x_{n-1}) h(X_{n-1})} \right] \right] \\ \stackrel{(h)}{=} \mathbb{E}_{\mu} \left[\prod_{k=0}^{n-2} (\mathbb{1}_{\{\mathbb{S} \setminus \{A \cup B\}\} \cap A_{k}}(X_{k})) (\mathbb{1}_{\{\mathbb{S} \setminus \{A \cup B\}\} \cap A_{n-1}}(X_{n-1}) h(X_{n-1})) \right] \\ \stackrel{(i)}{=} \mathbb{E}_{\mu} \left[h(X_{n-1}) \mathbb{1}_{\{V_{A \cup B} \geq n\}} \cdot \mathbb{1}_{E} \right]. \end{split}$$

Each of the steps (e)–(i) can be justified as follows:

- (e) the equality (11);
- (f) the equation (5.2.3) in [1];
- (g) from the assumption, we have for every $x_{n-1} \in \{\mathbb{S} \setminus (A \cup B)\} \cap A_{n-1}$,

$$p(x_{n-1}) = \sum_{x_n \in \mathbb{S}} p(x_{n-1}, x_n) h(x_n).$$

- (h) the equation (5.2.3) in [1];
- (i) the equality (11).

Finally, we set $\mathcal{L}_k := \left\{ E \in \mathcal{F}_k : \mathbb{E}_{\mu} \left[h(X_{k+1}) \mathbb{1}_{\{V_{A \cup B} \ge k+1\}} \cdot \mathbb{1}_E \right] = \mathbb{E}_{\mu} \left[h(X_k) \mathbb{1}_{\{V_{A \cup B} \ge k+1\}} \cdot \mathbb{1}_E \right] \right\}$ for each $k \in \mathbb{Z}_+$. Then, the equation (13) yields $\mathcal{P}_{n-1} \subseteq \mathcal{L}_{n-1}$. Now, we claim that \mathcal{L}_{n-1} is a π -system on Ω_0 .

- 1. Since $\mathcal{P}_{n-1} \subseteq \mathcal{L}_{n-1}$, both \varnothing and Ω_0 belong to \mathcal{L}_{n-1} ;
- 2. If $E, F \in \mathcal{L}_{n-1}$ with $E \subseteq F$, then we obtain from the linearly of expectations that

$$\mathbb{E}_{\mu} \left[h(X_n) \mathbb{1}_{\{V_{A \cup B} \ge n\}} \cdot \mathbb{1}_{F \setminus E} \right] = \mathbb{E}_{\mu} \left[h(X_n) \mathbb{1}_{\{V_{A \cup B} \ge n\}} \cdot \mathbb{1}_F \right] - \mathbb{E}_{\mu} \left[h(X_n) \mathbb{1}_{\{V_{A \cup B} \ge n\}} \cdot \mathbb{1}_E \right]$$
$$= \mathbb{E}_{\mu} \left[h(X_{n-1}) \mathbb{1}_{\{V_{A \cup B} \ge n\}} \cdot \mathbb{1}_F \right] - \mathbb{E}_{\mu} \left[h(X_{n-1}) \mathbb{1}_{\{V_{A \cup B} \ge n\}} \cdot \mathbb{1}_E \right]$$
$$= \mathbb{E}_{\mu} \left[h(X_{n-1}) \mathbb{1}_{\{V_{A \cup B} \ge n\}} \cdot \mathbb{1}_{F \setminus E} \right],$$

thereby $F \setminus E \in \mathcal{L}_{n-1}$.

3. Let $\{E_k\}_{k=1}^{\infty}$ be a sequence in \mathcal{L}_{n-1} with $E_k \uparrow E$ as $k \to \infty$. Then, $\mathbb{1}_{E_k} \stackrel{k \to \infty}{\to} \mathbb{1}_E$, and so the bounded convergence theorem yields

$$\mathbb{E}_{\mu} \left[h(X_n) \mathbb{1}_{\{V_{A \cup B} \ge n\}} \cdot \mathbb{1}_E \right] = \lim_{k \to \infty} \mathbb{E}_{\mu} \left[h(X_n) \mathbb{1}_{\{V_{A \cup B} \ge n\}} \cdot \mathbb{1}_{E_k} \right]$$
$$= \lim_{k \to \infty} \mathbb{E}_{\mu} \left[h(X_{n-1}) \mathbb{1}_{\{V_{A \cup B} \ge n\}} \cdot \mathbb{1}_{E_k} \right]$$
$$= \mathbb{E}_{\mu} \left[h(X_{n-1}) \mathbb{1}_{\{V_{A \cup B} \ge n\}} \cdot \mathbb{1}_E \right],$$

thereby $E \in \mathcal{L}_{n-1}$.

Hence, \mathcal{L}_{n-1} is a λ -system on Ω_0 with $\mathcal{P}_{n-1} \subseteq \mathcal{L}_{n-1}$ and so we get $\mathcal{L}_{n-1} = \sigma(\mathcal{P}_{n-1}) = \mathcal{F}_{n-1}$ by the π - λ theorem (*Theorem 2.1.6* in [1]). Since $h(X_{n-1})\mathbb{1}_{\{V_{A\cup B} \ge n\}} = h(X_{n-1})(1 - \mathbb{1}_{\{V_{A\cup B} \le n-1\}})$ is \mathcal{F}_{n-1} -measurable, it establishes the desired claim.

Putting Claim 2 into the equation (10) yields

$$\mathbb{E}_{\mu} \left[M_{n} | \mathcal{F}_{n-1} \right] = \mathbb{E}_{\mu} \left[h(X_{n}) \mathbb{1}_{\{V_{A \cup B} \ge n\}} | \mathcal{F}_{n-1} \right] + \sum_{k=0}^{n-1} h(X_{k}) \mathbb{1}_{\{V_{A \cup B} = k\}}$$
$$= h(X_{n-1}) \mathbb{1}_{\{V_{A \cup B} \ge n\}} + \sum_{k=0}^{n-1} h(X_{k}) \mathbb{1}_{\{V_{A \cup B} = k\}}$$
$$= h(X_{n-1}) \mathbb{1}_{\{V_{A \cup B} \ge n-1\}} + \sum_{k=0}^{n-2} h(X_{k}) \mathbb{1}_{\{V_{A \cup B} = k\}}$$
$$= h\left(X_{(n-1) \wedge V_{A \cup B}} \right) = M_{n-1}$$

 \mathbb{P}_{μ} -almost surely. Hence, the stochastic process $\{M_n = h(X_{n \wedge V_{A \cup B}})\}_{n=0}^{\infty}$ is a martingale with respect to the canonical filtration $\{\mathcal{F}_n\}_{n=0}^{\infty}$ for any bounded function $h: \mathbb{S} \to \mathbb{R}$ satisfying the condition (*).

(iii) Let $g: \mathbb{S} \to \mathbb{R}$ be any other function satisfying the condition (*), and g(x) = 1 if $x \in A$; g(x) = 0 if $x \in B$. Since

$$\sup \{|g(x)|: x \in \mathbb{S}\} \le \max \{1, \sup \{|g(x)|: x \in \mathbb{S} \setminus (A \cup B)\}\} < +\infty,$$

where the step (j) holds since $\mathbb{S} \setminus (A \cup B)$ is finite, g is a bounded function and so is h by the same argument. If we let f := g - h, then $f : \mathbb{S} \to \mathbb{R}$ is a bounded function satisfying the condition (*) together with f(x) = 0 for $x \in A \cup B$. As we have shown that the second statement (ii) of this problem is valid for any bounded function from \mathbb{S} to \mathbb{R} which satisfies the condition (*), $\{f(X_{n \wedge V_{A \cup B}})\}_{n=0}^{\infty}$ is a martingale with respect to the canonical filtration $\{\mathcal{F}_n\}_{n=0}^{\infty}$. Thus for any $x \in \mathbb{S} \setminus (A \cup B)$, we have

$$f(x) = \mathbb{E}_{x} \left[f \left(X_{0 \wedge V_{A \cup B}} \right) \right]$$

$$= \mathbb{E}_{x} \left[f \left(X_{n \wedge V_{A \cup B}} \right) \right]$$

$$= \mathbb{E}_{x} \left[f(X_{n}) \mathbb{1}_{\{V_{A \cup B} > n\}} \right] + \mathbb{E}_{x} \left[f \left(X_{V_{A \cup B}} \right) \mathbb{1}_{\{V_{A \cup B} \le n\}} \right]$$

$$\stackrel{(k)}{=} \mathbb{E}_{x} \left[f(X_{n}) \mathbb{1}_{\{V_{A \cup B} > n\}} \right],$$
(14)

where the step (h) follows from the fact that if $V_{A\cup B} < +\infty$, then $X_{V_{A\cup B}} \in A \cup B$ and so $f(X_{V_{A\cup B}}) = 0$. Since f is bounded, $L := \sup\{|f(x)| : x \in \mathbb{S}\} < +\infty$. Then, one has from (14) that

$$f(x)| = \left| \mathbb{E}_{x} \left[f(X_{n}) \mathbb{1}_{\{V_{A \cup B} > n\}} \right] \right|$$

$$\leq \mathbb{E}_{x} \left[|f(X_{n})| \mathbb{1}_{\{V_{A \cup B} > n\}} \right]$$

$$\leq L \cdot \mathbb{P}_{x} \left\{ V_{A \cup B} > n \right\}$$

$$\stackrel{(1)}{=} L \cdot \mathbb{P}_{x} \left\{ T_{A \cup B} > n \right\}$$

$$(15)$$

for every $n \in \mathbb{Z}_+$, where the step (l) comes from $x \in \mathbb{S} \setminus (A \cup B)$. As $\mathbb{S} \setminus (A \cup B)$ is finite and $\mathbb{P}_y \{T_{A \cup B} < +\infty\} > 0$ for all $y \in \mathbb{S} \setminus (A \cup B)$, we can apply Problem 3 (*Exercise 5.2.6* in [1]) at this point: there exists an $N \in \mathbb{N}$ and $\epsilon > 0$ such that $\mathbb{P}_y \{T_{A \cup B} > kN\} \le (1 - \epsilon)^k$ for all $k \in \mathbb{N}$ and $y \in \mathbb{S} \setminus (A \cup B)$. Putting n = kN into the bound (15) yields for every $x \in \mathbb{S} \setminus (A \cup B)$ that

$$|f(x)| \le L(1-\epsilon)^k \tag{16}$$

for all $k \in \mathbb{N}$. Letting $k \to \infty$ in (16), we can conclude that f(x) = 0 for all $x \in \mathbb{S} \setminus (A \cup B)$. Consequently, we have f(x) = g(x) - h(x) = 0 for all $x \in \mathbb{S}$, thereby $g \equiv h$ on \mathbb{S} . This completes the proof of the third statement.

Problem 5 (*Exercise 5.2.8.* in [1]).

Let $S := [0:N] = \{0, 1, \dots, N-1\}$. Then, one can see that

- $\{0\} \cap \{N\} = \emptyset;$
- $\mathbb{S} \setminus \{0, N\} = \{1, 2, \cdots, N-1\}$ is finite;
- Since $V_0 \wedge V_N = V_{\{0\} \cup \{N\}}, \mathbb{P}_x \{V_{\{0\} \cup \{N\}} < +\infty\} = \mathbb{P}_x \{V_0 \wedge V_N < +\infty\} > 0$ for all $x \in \mathbb{S} \setminus \{0, N\}.$

According to the above observations and the third problem (3) of Problem 4 (*Exercise 5.2.7* in [1]), we know that the function $h : \mathbb{S} \to \mathbb{R}$ defined by $h(x) := \mathbb{P}_x \{V_N < V_0\}, x \in \mathbb{S}$, is the unique function such that h(0) = 0, h(N) = 1, and

$$h(x) = \sum_{y \in \mathbb{S}} p(x, y) h(y), \ \forall x \in \mathbb{S} \setminus \{0, N\},$$
(17)

where $p(\cdot, \cdot) : \mathbb{S} \times \mathbb{S} \to [0, 1]$ denotes the transition probability of given homogeneous Markov chain.

Now, let $g: \mathbb{S} \to \mathbb{R}$ to be $g(x) := \frac{x}{N}$, $x \in \mathbb{S}$. It's clear that g(0) = 0 and g(N) = 1. We claim that the function $g: \mathbb{S} \to \mathbb{R}$ satisfies the equation (17). Since $\{X_n\}_{n=0}^{\infty}$ is a martingale with respect to the canonical filtration $\{\mathcal{F}_n := \sigma(X_0, X_1, \cdots, X_n)\}_{n=0}^{\infty}$, we have

$$\begin{aligned} X_{n-1} &= \mathbb{E}_{\mu} \left[X_{n} \left(\sum_{y \in \mathbb{S}} \mathbb{1}_{\{X_{n} = y\}} \right) \middle| \mathcal{F}_{n-1} \right] \\ &= \mathbb{E}_{\mu} \left[X_{n} \left(\sum_{y \in \mathbb{S}} \mathbb{1}_{\{X_{n} = y\}} \right) \middle| \mathcal{F}_{n-1} \right] \\ &\stackrel{(a)}{=} \sum_{y \in \mathbb{S}} \mathbb{E}_{\mu} \left[X_{n} \mathbb{1}_{\{X_{n} = y\}} \middle| \mathcal{F}_{n-1} \right] \\ &= \sum_{y \in \mathbb{S}} \mathbb{E}_{\mu} \left[y \mathbb{1}_{\{X_{n} = y\}} \middle| \mathcal{F}_{n-1} \right] \\ &= \sum_{y \in \mathbb{S}} y \cdot \mathbb{P}_{\mu} \left\{ X_{n} = y \middle| \mathcal{F}_{n-1} \right\} \\ &\stackrel{(b)}{=} \sum_{y \in \mathbb{S}} y \cdot p \left(X_{n-1}, y \right), \end{aligned}$$

$$(18)$$

 \mathbb{P}_{μ} -almost surely, where μ is any initial distribution of the Markov chain $\{X_n\}_{n=0}^{\infty}$, and the step (a) is valid since $\mathbb{S} = [0:N]$ is finite, the step (b) follows from the assumption that $\{X_n\}_{n=0}^{\infty}$ is a homogeneous Markov chain with transition probability $p(\cdot, \cdot)$. Thus, it follows from (18) that

$$x = \int_{\{X_{n-1}=x\}} X_{n-1} d\mathbb{P}_{\mu}$$

=
$$\int_{\{X_{n-1}=x\}} \left[\sum_{y \in \mathbb{S}} y \cdot p(X_{n-1}, y) \right] d\mathbb{P}_{\mu}$$

=
$$\sum_{y \in \mathbb{S}} y \int_{\{X_{n-1}=x\}} p(X_{n-1}, y) d\mathbb{P}_{\mu}$$

=
$$\sum_{y \in \mathbb{S}} y \cdot p(x, y)$$
 (19)

for every $x \in S$, since $\{X_{n-1} = x\} \in \mathcal{F}_{n-1}$. Dividing the equation (19) by N yields

$$g(x) = \sum_{y \in \mathbb{S}} p(x, y) g(y), \ \forall x \in \mathbb{S},$$

thereby the function $g : \mathbb{S} \to \mathbb{R}$ satisfies the equation (17). From the uniqueness of such a function h, one can deduce $g \equiv h$ on \mathbb{S} . Hence,

$$\mathbb{P}_x\left\{V_N < V_0\right\} = h(x) = g(x) = \frac{x}{N}$$

for all $x \in \mathbb{S} = [0:N]$.

Problem 6 (Exercise 5.2.11. in [1]: Exit times).

(i) Fix any $x \in \mathbb{S} \setminus A$, and consider the following two cases:

(Case #1) $\mathbb{P}_x \{ V_A = +\infty \} > 0$: Define $Z : \Omega_0 \to \mathbb{R}$ by $Z(\omega) := \mathbb{1}_{\{V_A = +\infty\}}(\omega)$ for $\omega \in \Omega_0$. Then for every $x \in \mathbb{S} \setminus A$,

$$\mathbb{P}_{x} \{ V_{A} = +\infty \} = \mathbb{E}_{x} [Z]$$

$$\stackrel{(a)}{=} \mathbb{E}_{x} [Z \circ \theta_{1}]$$

$$= \mathbb{E}_{x} [\mathbb{E}_{x} [Z \circ \theta_{1} | \mathcal{F}_{1}]]$$

$$\stackrel{(b)}{=} \mathbb{E}_{x} [\mathbb{E}_{x_{1}} [Z]]$$

$$= \mathbb{E}_{x} \left[\mathbb{E}_{X_{1}} [Z] \left(\sum_{y \in \mathbb{S}} \mathbb{1}_{\{X_{1} = y\}} \right) \right]$$

$$\stackrel{(c)}{=} \sum_{y \in \mathbb{S}} \mathbb{E}_{x} \left[\mathbb{E}_{X_{1}} [Z] \mathbb{1}_{\{X_{1} = y\}} \right]$$

$$= \sum_{y \in \mathbb{S}} \mathbb{E}_{x} \left[\mathbb{E}_{y} [Z] \mathbb{1}_{\{X_{1} = y\}} \right]$$

$$= \sum_{y \in \mathbb{S}} \mathbb{E}_{x} \left[\mathbb{E}_{y} [Z] \mathbb{1}_{\{X_{1} = y\}} \right]$$

$$= \sum_{y \in \mathbb{S}} \mathbb{P}_{x} \{X_{1} = y\} \mathbb{E}_{y} [Z]$$

$$= \sum_{y \in \mathbb{S}} p(x, y) \cdot \mathbb{P}_{y} \{V_{A} = +\infty\} > 0.$$
(20)

Here, the above steps (a)-(c) can be justified as follows:

- (a) Since $x \in \mathbb{S} \setminus A$, $Z = Z \circ \theta_1$ if $X_0 = x$;
- (b) Since Z is a bounded, measurable function defined on the sequence space $(\Omega_0, \mathcal{F}_{\infty})$, we can apply the Markov property (*Theorem 5.2.3* in [1]) and the step (b) follows;
- (c) the Fubini-Tonelli's theorem, since the summands are non-negative.

The inequality (20) implies $p(x, y) \cdot \mathbb{P}_y \{ V_A = +\infty \} > 0$ for some $y \in \mathbb{S}$. As a consequence, we have

$$p(x,y)g(y) = p(x,y) \cdot \mathbb{E}_y \left[V_A \right] \ge p(x,y) \cdot \mathbb{E}_y \left[V_A \cdot \mathbb{1}_{\{V_A = +\infty\}} \right] \stackrel{\text{(d)}}{=} +\infty,$$

where the step (d) holds since p(x, y) > 0 and $\mathbb{P}_y \{V_A = +\infty\} > 0$. Hence, we arrive at

$$1 + \sum_{y \in \mathbb{S}} p(x, y)g(y) = +\infty \stackrel{\text{(e)}}{=} \mathbb{E}_x \left[V_A \right] = g(x),$$

where the step (e) follows from the assumption $\mathbb{P}_x \{ V_A = +\infty \} > 0.$

(Case #2) $\mathbb{P}_x \{ V_A = +\infty \} = 0$: Then, we have from the monotone convergence theorem that

$$g(x) = \mathbb{E}_x \left[V_A \right] \stackrel{\text{(t)}}{=} \mathbb{E}_x \left[V_A \cdot \mathbb{1}_{\{V_A < +\infty\}} \right] = \lim_{n \to \infty} \uparrow \mathbb{E}_x \left[V_A \cdot \mathbb{1}_{\{V_A \le n\}} \right], \tag{21}$$

where the step (f) is due to the assumption $\mathbb{P}_x \{ V_A = +\infty \} = 0$. Define $Y_n : \Omega_0 \to \mathbb{R}$ for $n \in \mathbb{Z}_+$ by

$$Y_n(\omega) := V_A(\omega) \cdot \mathbb{1}_{\{V_A \le n\}}(\omega), \ \forall \omega \in \Omega_0.$$

As $|Y_n| = |V_A \cdot \mathbb{1}_{\{V_A \leq n\}}| \leq n \cdot \mathbb{1}_{\{V_A \leq n\}}$ on Ω_0 , every Y_n is a bounded, measurable function defined on the sequence space $(\Omega_0, \mathcal{F}_\infty)$. One can see that if $X_0 \in \mathbb{S} \setminus A$,

$$(Y_n \circ \theta_1)(\omega) = V_A(\theta_1(\omega)) \cdot \mathbb{1}_{\{V_A(\theta_1(\omega)) \le n\}}$$

$$\stackrel{\text{(g)}}{=} (V_A(\omega) - 1) \mathbb{1}_{\{V_A(\omega) - 1 \le n\}}$$

$$= V_A(\omega) \cdot \mathbb{1}_{\{V_A \le n+1\}}(\omega) - \mathbb{1}_{\{V_A \le n+1\}}(\omega)$$

$$= Y_{n+1}(\omega) - \mathbb{1}_{\{V_A \le n+1\}}(\omega)$$

for every $\omega \in \Omega_0$ and $n \in \mathbb{Z}_+$, where the step (g) holds since if $V_A(\omega) \ge 1$, then $V_A(\omega) = V_A(\theta_1(\omega)) + 1$. Thus, $Y_n = (Y_{n-1} \circ \theta_1) + \mathbb{1}_{\{V_A \le n\}}$ on Ω_0 . Hence,

$$\mathbb{E}_{x} \left[V_{A} \cdot \mathbb{1}_{\{V_{A} \leq n\}} \right] = \mathbb{E}_{x} \left[Y_{n} \right]$$

$$= \mathbb{E}_{x} \left[Y_{n-1} \circ \theta_{1} \right] + \mathbb{P}_{x} \left\{ V_{A} \leq n \right\}$$

$$= \mathbb{E}_{x} \left[\mathbb{E}_{x} \left[Y_{n-1} \circ \theta_{1} \right| \mathcal{F}_{1} \right] \right] + \mathbb{P}_{x} \left\{ V_{A} \leq n \right\}$$

$$\stackrel{(h)}{=} \mathbb{E}_{x} \left[\mathbb{E}_{X_{1}} \left[Y_{n-1} \right] \right] + \mathbb{P}_{x} \left\{ V_{A} \leq n \right\},$$
(22)

where the step (h) is due to the Markov property (*Theorem 5.2.3* in [1]). Here, $\{\mathcal{F}_n := \sigma(X_0, X_1, \cdots, X_n)\}_{n=0}^{\infty}$ refers to the canonical filtration of $\{X_n\}_{n=0}^{\infty}$. By letting $n \to \infty$ in the equation (22), it follows that

$$g(x) \stackrel{(1)}{=} \lim_{n \to \infty} \uparrow \mathbb{E}_x \left[V_A \cdot \mathbb{1}_{\{V_A \le n\}} \right]$$

$$= \lim_{n \to \infty} \uparrow \mathbb{E}_x \left[\mathbb{E}_{X_1} \left[Y_{n-1} \right] \right] + \mathbb{P}_x \left\{ V_A < +\infty \right\}$$

$$\stackrel{(j)}{=} \mathbb{E}_x \left[\mathbb{E}_{X_1} \left[V_A \cdot \mathbb{1}_{\{V_A < +\infty\}} \right] \right] + 1$$

$$= \mathbb{E}_x \left[\sum_{y \in \mathbb{S}} \mathbb{E}_{X_1} \left[V_A \cdot \mathbb{1}_{\{V_A < +\infty\}} \right] \mathbb{1}_{\{X_1 = y\}} \right] + 1$$

$$\stackrel{(k)}{=} \sum_{y \in \mathbb{S}} \mathbb{E}_x \left[\mathbb{E}_X \left[\mathbb{E}_X \left[V_A \cdot \mathbb{1}_{\{V_A < +\infty\}} \right] \mathbb{1}_{\{X_1 = y\}} \right] + 1$$

$$= \sum_{y \in \mathbb{S}} \mathbb{E}_x \left[\mathbb{E}_y \left[V_A \cdot \mathbb{1}_{\{V_A < +\infty\}} \right] \mathbb{1}_{\{X_1 = y\}} \right] + 1$$

$$= \sum_{y \in \mathbb{S}} p(x, y) \mathbb{E}_y \left[V_A \cdot \mathbb{1}_{\{V_A < +\infty\}} \right] + 1$$

$$\stackrel{(1)}{=} \sum_{y \in \mathbb{S}} p(x, y) \underbrace{\mathbb{E}_y \left[V_A \right] + 1}_{= g(y)}$$

thereby it establishes our desired result. The steps (i)-(1) can be validated via the following reasons:

- (i) the equality (21);
- (j) the monotone convergence theorem together with the assumption $\mathbb{P}_x \{V_A = +\infty\} = 0$;
- (k) the Fubini-Tonelli's theorem, since the summands are non-negative;
- (l) to see this step, we should verify that $\mathbb{P}_y \{V_A < +\infty\} = 1$ for all $y \in \mathbb{S}$. By subtracting (20) from

1, we obtain

$$1 = \mathbb{P}_{x} \{ V_{A} < +\infty \}$$

$$= 1 - \mathbb{P}_{x} \{ V_{A} = +\infty \}$$

$$= \sum_{y \in \mathbb{S}} p(x, y) - \sum_{y \in \mathbb{S}} p(x, y) \cdot \mathbb{P}_{y} \{ V_{A} = +\infty \}$$

$$= \sum_{y \in \mathbb{S}} p(x, y) \cdot \mathbb{P}_{y} \{ V_{A} < +\infty \}$$

$$\leq \sum_{y \in \mathbb{S}} p(x, y)$$

$$= 1,$$

$$(23)$$

so all the inequalities in (23) are in fact equalities. Thus, we get $\mathbb{P}_y \{V_A < +\infty\} = 1$ for all $y \in \mathbb{S}$. Combining all the arguments of the above two cases completes the proof of the problem (i).

(ii) For convenience, we define $M_n := g(X_{n \wedge V_A}) + (n \wedge V_A)$ for $n \in \mathbb{Z}_+$, for any function $g : \mathbb{S} \to [0, +\infty)$ satisfying the given condition (*). Then, M_n can be written by

$$M_n = \{g(X_n) + n\} \mathbb{1}_{\{V_A > n\}} + \sum_{k=0}^n \{g(X_k) + k\} \mathbb{1}_{\{V_A = k\}}.$$
(24)

Let $L := \sup \{ |g(x)| : x \in \mathbb{S} \setminus A \}$, which is finite since $\mathbb{S} \setminus A$ is a finite set. If $V_A > n$, then $X_n \in \mathbb{S} \setminus A$ and it follows that

$$\left| \{ g(X_n) + n \} \, \mathbb{1}_{\{V_A > n\}} \right| \le (L+n) \cdot \, \mathbb{1}_{\{V_A > n\}}.$$
⁽²⁵⁾

Also, since
$$\{V_A = k\} = \{X_0 \in \mathbb{S} \setminus A, \dots, X_{k-1} \in \mathbb{S} \setminus A, X_k \in A\}$$
, we have

$$\mathbb{E}_{\mu} \left[g(X_k) \mathbb{1}_{\{V_A = k\}} \right] = \mathbb{E}_{\mu} \left[\prod_{j=0}^{k-1} \mathbb{1}_{\mathbb{S} \setminus A}(X_j) \left\{ \mathbb{1}_A(X_k) g(X_k) \right\} \right]$$

$$\leq \mathbb{E}_{\mu} \left[\prod_{j=0}^{k-1} \mathbb{1}_{\mathbb{S} \setminus A}(X_j) g(X_k) \right]$$

$$\left[\cdots \left[\sum_{x_k \in \mathbb{S} \setminus A} \mu(x_0) \left[\sum_{x_1 \in \mathbb{S} \setminus A} p(x_0, x_1) \left[\sum_{x_k \in \mathbb{S}} p(x_{k-1}, x_k) g(x_k) \right] \right] \cdots \right] \right]$$

$$(26)$$

$$\stackrel{(n)}{=} \sum_{x_0 \in \mathbb{S} \setminus A} \mu(x_0) \left[\sum_{x_1 \in \mathbb{S} \setminus A} p(x_0, x_1) \left[\cdots \left[\sum_{x_{k-1} \in \mathbb{S} \setminus A} p(x_0, x_1) \left[\cdots \left[\sum_{x_{k-1} \in \mathbb{S} \setminus A} p(x_0, x_1) \left[\cdots \left[\sum_{x_{k-1} \in \mathbb{S} \setminus A} p(x_0, x_1) \right] \right] \cdots \right] \right] \right]$$

$$(26)$$

$$\stackrel{(n)}{=} \mathbb{E}_{\mu} \left[\sum_{x_{k-1} \in \mathbb{S} \setminus A} p(x_{k-2}, x_{k-1}) g(x_{k-1}) \right] \cdots \right]$$

$$= \mathbb{E}_{\mu} \left[g(X_{k-1}) \mathbb{1}_{\{V_A = k\}} \right]$$

Here, the above steps (m)–(p) are based on the following reasons:

- (m) the equation (5.2.3) in [1];
- (n) the function g obeys the condition (*);
- (o) the equation (5.2.3) in [1];
- (p) if $V_A = k$, then $X_{k-1} \in \mathbb{S} \setminus A$ and so $g(X_{k-1}) \mathbb{1}_{\{V_A = k\}} \leq L \cdot \mathbb{1}_{\{V_A = k\}}$.

Combining (24) together with two pieces (25) and (26) yields for every $n \in \mathbb{Z}_+$,

$$|M_n| \le (L+n) \mathbb{1}_{\{V_A > n\}} + \sum_{k=0}^n (L+k) \mathbb{1}_{\{V_A = k\}} \le L+n,$$

thereby $M_n \in L^1(\Omega_0, \mathcal{F}_\infty, \mathbb{P}_\mu)$, *i.e.*, each M_n is \mathbb{P}_μ -integrable. Now, we will prove that $\mathbb{E}_\mu[M_n | \mathcal{F}_{n-1}] \stackrel{\mathbb{P}_\mu\text{-a.s.}}{=} M_{n-1}$ for all $n \in \mathbb{N}$. We begin by noting that

$$\mathbb{E}_{\mu} [M_{n} | \mathcal{F}_{n-1}] = \mathbb{E}_{\mu} \left[\{g(X_{n}) + n\} \mathbb{1}_{\{V_{A} \ge n\}} | \mathcal{F}_{n-1}] + \sum_{k=0}^{n-1} \mathbb{E}_{\mu} \left[\{g(X_{k}) + k\} \mathbb{1}_{\{V_{A} = k\}} | \mathcal{F}_{n-1}] \right]$$

$$\stackrel{(q)}{=} \mathbb{E}_{\mu} \left[\{g(X_{n}) + n\} \mathbb{1}_{\{V_{A} \ge n\}} | \mathcal{F}_{n-1}] + \sum_{k=0}^{n-1} \{g(X_{k}) + k\} \mathbb{1}_{\{V_{A} = k\}} \right]$$
(27)

 \mathbb{P}_{μ} -almost surely, where the step (q) follows from the fact that $\{g(X_k) + k\} \mathbb{1}_{\{V_A = k\}}$ is \mathcal{F}_k -measurable for $k \in [0: n-1]$. At this point, we claim the following statement.

Claim 3. $\mathbb{E}_{\mu} \left[\left\{ g(X_n) + n \right\} \mathbb{1}_{\{V_A \ge n\}} \middle| \mathcal{F}_{n-1} \right] \stackrel{\mathbb{P}_{\mu}\text{-a.s.}}{=} \left\{ g(X_{n-1}) + (n-1) \right\} \mathbb{1}_{\{V_A \ge n\}}.$

Proof of Claim 3.

To begin with, we notice that $\{g(X_{n-1}) + (n-1)\} \mathbb{1}_{\{V_A \ge n\}}$ is \mathcal{F}_{n-1} -measurable. As in the proof of Claim 2, let $\mathcal{P}_k := \{\{\omega \in \Omega_0 : \omega_0 \in A_0, \omega_1 \in A_1, \cdots, \omega_k \in A_k\} : A_0, A_1, \cdots, A_k \in \mathcal{S} = 2^{\mathbb{S}}\}$ for $k \in \mathbb{Z}_+$. Then, \mathcal{P}_k is a π -system on Ω_0 with $\mathcal{F}_k = \sigma(\mathcal{P}_k)$. Also, define

$$\mathcal{L}_{k} := \left\{ E \in \mathcal{F}_{k} : \mathbb{E}_{\mu} \left[\{ g(X_{k+1}) + (k+1) \} \, \mathbb{1}_{\{V_{A} \ge k+1\}} \cdot \mathbb{1}_{E} \right] = \mathbb{E}_{\mu} \left[\{ g(X_{k}) + k \} \, \mathbb{1}_{\{V_{A} \ge k+1\}} \cdot \mathbb{1}_{E} \right] \right\}, \, \forall k \in \mathbb{Z}_{+}.$$

It suffices to show that $\mathcal{L}_{n-1} = \mathcal{F}_{n-1}$. As a next step, we prove $\mathcal{P}_{n-1} \subseteq \mathcal{L}_{n-1}$. Given any $E \in \mathcal{P}_{n-1}$, it can be written by

$$E = \{\omega \in \Omega_0 : \omega_0 \in A_0, \omega_1 \in A_1, \cdots, \omega_{n-1} \in A_{n-1}\}$$

for some $A_0, A_1, \dots, A_{n-1} \in \mathcal{S} = 2^{\mathbb{S}}$. It's clear from $\{V_A \ge n\} = \{X_0 \in \mathbb{S} \setminus A, X_1 \in \mathbb{S} \setminus A, \dots, X_{n-1} \in \mathbb{S} \setminus A\}$ that

$$\mathbb{1}_{\{V_A \ge n\}}(\omega) = \sum_{k=0}^{n-1} \mathbb{1}_{\mathbb{S}\setminus A}(\omega_k), \ \forall \omega \in \Omega_0.$$

Hence, we arrive at

$$\begin{split} \mathbb{E}_{\mu} \left[\{g(X_{n}) + n\} \, \mathbb{1}_{\{V_{A} \ge n\}} \cdot \mathbb{1}_{E} \right] &= \mathbb{E}_{\mu} \left[\left(\prod_{k=0}^{n-1} \mathbb{1}_{(\mathbb{S} \setminus A) \cap A_{k}}(X_{k}) \right) \{g(X_{n}) + n\} \right] \\ & \stackrel{(\mathbf{r})}{=} \sum_{x_{0} \in (\mathbb{S} \setminus A) \cap A_{0}} \mu(x_{0}) \left[\sum_{x_{1} \in (\mathbb{S} \setminus A) \cap A_{1}} p(x_{0}, x_{1}) \\ \left[\cdots \left[\sum_{x_{n-1} \in (\mathbb{S} \setminus A) \cap A_{n-1}} p(x_{n-2}, x_{n-1}) \left[\sum_{x_{n} \in \mathbb{S}} p(x_{n-1}, x_{n}) \{g(x_{n}) + n\} \right] \right] \cdots \right] \right] \\ & \stackrel{(\mathbf{s})}{=} \sum_{x_{0} \in (\mathbb{S} \setminus A) \cap A_{0}} \mu(x_{0}) \left[\sum_{x_{1} \in (\mathbb{S} \setminus A) \cap A_{1}} p(x_{0}, x_{1}) \\ \left[\cdots \left[\sum_{x_{n-1} \in (\mathbb{S} \setminus A) \cap A_{n-1}} p(x_{n-2}, x_{n-1}) \{g(x_{n-1}) + (n-1)\} \right] \right] \\ & \stackrel{(\mathbf{t})}{=} \mathbb{E}_{\mu} \left[\left(\prod_{k=0}^{n-1} \mathbb{1}_{(\mathbb{S} \setminus A) \cap A_{k}}(X_{k}) \right) \{g(X_{n-1}) + (n-1)\} \right] \\ & = \mathbb{E}_{\mu} \left[\{g(X_{n-1}) + (n-1)\} \, \mathbb{1}_{\{V_{A} \ge n\}} \cdot \mathbb{1}_{E} \right], \end{split}$$

thereby $E \in \mathcal{L}_{n-1}$. Each steps (r)–(t) are valid since:

- (r) the equation (5.2.3) in [1];
- (s) for $x_{n-1} \in \mathbb{S} \setminus A$, we have

$$\sum_{x_n \in \mathbb{S}} p(x_{n-1}, x_n) \{ g(x_n) + n \} = \left[1 + \sum_{x_n \in \mathbb{S}} p(x_{n-1}, x_n) \right] + (n-1)$$
$$= g(x_{n-1}) + (n-1),$$

because the function g satisfies the condition (*);

(t) the equation (5.2.3) in [1].

Therefore, $\mathcal{P}_{n-1} \subseteq \mathcal{L}_{n-1}$. From the same argument as in the proof of Claim 2, one can easily see that \mathcal{L}_{n-1} is a λ -system on Ω_0 . Employing the π - λ theorem, we eventually obtain $\mathcal{L}_{n-1} = \sigma(\mathcal{P}_{n-1}) = \mathcal{F}_{n-1}$, and this completes the proof of Claim 3.

Finally, we can finish the proof of the statement (ii) of this problem. Indeed, from (27) one has

$$\mathbb{E}_{\mu} [M_n | \mathcal{F}_{n-1}] = \mathbb{E}_{\mu} \left[\left\{ g(X_n) + n \right\} \mathbb{1}_{\{V_A \ge n\}} \middle| \mathcal{F}_{n-1} \right] + \sum_{k=0}^{n-1} \left\{ g(X_k) + k \right\} \mathbb{1}_{\{V_A = k\}}$$

$$\stackrel{(u)}{=} \left\{ g(X_{n-1}) + (n-1) \right\} \mathbb{1}_{\{V_A \ge n\}} + \sum_{k=0}^{n-1} \left\{ g(X_k) + k \right\} \mathbb{1}_{\{V_A = k\}}$$

$$= \left\{ g(X_{n-1}) + (n-1) \right\} \mathbb{1}_{\{V_A \ge n-1\}} + \sum_{k=0}^{n-2} \left\{ g(X_k) + k \right\} \mathbb{1}_{\{V_A = k\}}$$

$$= M_{n-1}$$

 \mathbb{P}_{μ} -almost surely, where the step (u) follows from Claim 3. So, $\{M_n = g(X_{n \wedge V_A}) + (n \wedge V_A)\}_{n=0}^{\infty}$ is a martingale with respect to the canonical filtration $\{\mathcal{F}_n = \sigma(X_0, X_1, \cdots, X_n)\}_{n=0}^{\infty}$ for any function $g: \mathbb{S} \to [0, +\infty)$ that satisfies the condition (*). As a final remark, we note that the statement (ii) also holds for any bounded function $g: \mathbb{S} \to \mathbb{R}$ which satisfies the condition (*). The \mathbb{P}_{μ} -integrability is immediate from the boundedness of g, and the remaining steps are completely identical. Hence, $\{g(X_{n \wedge V_A}) + (n \wedge V_A)\}_{n=0}^{\infty}$ is a martingale with respect to the canonical filtration $\{\mathcal{F}_n\}_{n=0}^{\infty}$ for any non-negative or bounded function $g: \mathbb{S} \to \mathbb{R}$ obeying the condition (*).

(iii) Let $h: \mathbb{S} \to \mathbb{R}$ be any function satisfying

$$h(x) = 1 + \sum_{y \in \mathbb{S}} p(x, y) h(y), \ \forall x \in \mathbb{S} \setminus A,$$

together with h(x) = 0 for all $x \in A$. So, $\sup_{x \in \mathbb{S}} |h(x)| = \sup_{x \in \mathbb{S} \setminus A} |h(x)| < +\infty$, since $\mathbb{S} \setminus A$ is finite. Thus, h is bounded and likewise, g is also a bounded function which satisfies the condition (*) and g(x) = 0 for all $x \in A$. As the second statement (ii) of this problem holds for any bounded function satisfying the condition (*), both $\{g(X_{n \wedge V_A}) + (n \wedge V_A)\}_{n=0}^{\infty}$ and $\{h(X_{n \wedge V_A}) + (n \wedge V_A)\}_{n=0}^{\infty}$ are martingales with respect to the canonical filtration $\{\mathcal{F}_n = \sigma(X_0, X_1, \cdots, X_n)\}_{n=0}^{\infty}$. Now, define $f := g - h : \mathbb{S} \to \mathbb{R}$. Then, $\{f(X_{n \wedge V_A})\}_{n=0}^{\infty}$ also forms a martingale with respect to the canonical filtration $\{\mathcal{F}_n\}_{n=0}^{\infty}$, since

$$f(X_{n \wedge V_A}) = \{g(X_{n \wedge V_A}) + (n \wedge V_A)\} - \{h(X_{n \wedge V_A}) + (n \wedge V_A)\}$$

Hence for any $x \in \mathbb{S} \setminus A$, we have

$$f(x) = \mathbb{E}_{x} \left[f\left(X_{0 \wedge V_{A}}\right) \right]$$

$$\stackrel{(v)}{=} \mathbb{E}_{x} \left[f\left(X_{n \wedge V_{A}}\right) \right]$$

$$= \mathbb{E}_{x} \left[f(X_{n}) \mathbb{1}_{\{V_{A} > n\}} \right] + \sum_{k=0}^{n} \mathbb{E}_{x} \left[f(X_{k}) \mathbb{1}_{\{V_{A} = k\}} \right]$$

$$\stackrel{(w)}{=} \mathbb{E}_{x} \left[f(X_{n}) \mathbb{1}_{\{V_{A} > n\}} \right],$$
(28)

for every $n \in \mathbb{Z}_+$, where the step (v) holds since $\{f(X_{n \wedge V_A})\}_{n=0}^{\infty}$ is a martingale with respect to $\{\mathcal{F}_n\}_{n=0}^{\infty}$, and the step (w) is owing to the fact that if $V_A = k$, then $X_k \in A$ together with the fact f(x) = g(x) - h(x) = 0for all $x \in A$. As both g and h are bounded, so is f. Thus, $L := \sup\{|f(x)| : x \in \mathbb{S}\} < +\infty$. Then, we obtain from (28) that

$$|f(x)| = \left| \mathbb{E}_x \left[f(X_n) \mathbb{1}_{\{V_A > n\}} \right] \right| \le \mathbb{E}_x \left[|f(X_n)| \mathbb{1}_{\{V_A > n\}} \right] \le L \cdot \mathbb{P}_x \left\{ V_A > n \right\}$$
(29)

for all $x \in \mathbb{S} \setminus A$ and $n \in \mathbb{Z}_+$.

On the other hand, it's clear that $\mathbb{S} \setminus A$ is finite, and $\mathbb{P}_x \{T_A < +\infty\} = \mathbb{P}_x \{V_A < +\infty\} < +\infty$ for every $x \in \mathbb{S} \setminus A$ from the assumptions of the problem. So, we can apply Problem (3) (*Exercise 5.2.6.* in [1]): there is an $N \in \mathbb{N}$ and $\epsilon > 0$ such that $\mathbb{P}_y \{T_A > kN\} \leq (1 - \epsilon)^k$ for all $k \in \mathbb{N}$ and $y \in \mathbb{S} \setminus C$. Plugging n = kN into the bound (29) produces for every $x \in \mathbb{S} \setminus A$,

$$|f(x)| = L \cdot \mathbb{P}_x \{ V_A > kN \} = L \cdot \mathbb{P}_x \{ T_A > kN \} \le L(1-\epsilon)^k$$

for all $k \in \mathbb{N}$. By letting $k \to \infty$, it gives f(x) = 0 for all $x \in \mathbb{S} \setminus A$. Hence, $f = g - h \equiv 0$ on \mathbb{S} , thereby $h(x) = g(x) = \mathbb{E}_x [V_A]$ for all $x \in \mathbb{S}$. This establishes our desired result.

References

[1] Rick Durrett. Probability: theory and examples, volume 49. Cambridge university press, 2019.