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Throughout this homework, let Z denote the set of all non-negative integers, and [a : b] := {a,a + 1,--- ,b —

for a,b € Z with a < b. We also write [n] := [1 : n] for n € N. Moreover, | denotes the disjoint union, and
given a set A and k € Z, (‘2) :={B C A:|B| = k}. Also, we use the symbol S instead of S to denote the

underlying state space of stochastic processes.

Problem 1 (Ezercise 5.2.1. in [1]).
To begin with, we introduce some notations: F,, := o ({Xx: k€ [0:n]}) and G, := 0 ({Xy : k > n})
for n € Z4. Given a fixed time step n € Z,, and two events A € F, and B € G,,, we have 14np = 1415,

we obtain

P.{ANB|X,} =E,[1anp|o(X,)]

=Eu[1alp|o(Xy)]

) (1)
Y, [E. (1415 Fll o(X0)]

YR, (14 E,[15] Foll o(X0)]

[P,,~almost surely, where the step (a) follows from Theorem 4.1.13 in [1], and the step (b) holds by Theorem
4.1.14 in [1] together with the fact A € F,.

Claim 1. For any B € Gy, E, [1g| F,] is 0(X,,)-measurable.

Proof of Claim 1.

Let Py := {{w € Qo : wy € Ap,wnt1 € A1, ywnik € Ak} Ao, A1, -+, Ax € S}, k € Z4, where (S,S)
is the underlying nice state space and (o, Foo) denotes the sequence space constructed from (S,S). Here,
we recall that a measurable space (S, S) is nice (or said to be a standard Borel space) if there is a bijection
¢ : S — R such that both ¢ : (S,8) — (R, B(R)) and ¢! : (R, B(R)) — (S,S) are measurable, where B(R)
denotes the Borel o-field on R (See Section 2.1 of [1] for further details). Set P := (Jp—, Px. Choose any
two elements C, D € P. Then, C € P, and D € P; for some k,l € Z,. We may write C' and D by

C:{WEQUZWnEAQ,wn+1 €Ay, ,wm_kEAk};
DZ{WEQgtwnGBo,wn.:,_l € By, ,wn_HEBl},

1,b}



for some Ay, Ay, , A, By, By, - ,B; € S. Assuming k < [, we have
CNnD= {w € Qo:wy € AoﬂBo,‘-- ,Wntk € AkﬂBk,wn+k+1 € Bk+1,-~ , Wntl € Bl} e Py,

thereby C' N D € P. Thus, P is a w-system on Qg with G, = o(P).

Now, choose any F € P. Then, it can be written as
E = {w €Qg:wy € Ao,wn+1 S Al,--- ,Wntk € Ak}

for some k € Z, and Ag, A1, -+, A € S. Define a function Y : Qy — R by
k
Y(w) =[] 14, (w;), we Q.
7=0

It’s clear that Y is a bounded measurable function from the sequence space (€9, F) to (R, B(R)). Moreover,

one can see that

k k
Lp(w) = [T 1, @nss) = TT 04, (0n()];) = (7 0 60) (@) (2)
=0 =0

for all w € Q. Therefore,

c d
E, [1g] F] € B, [¥ 0 6, 5] Q Ex, [Y] (3)

IP,,~almost surely, where the step (c) is due to (2), and the step (d) follows from the Markov property. Since
the last term of (3) is 0(X,,)-measurable, we conclude that E, [1g|F,] is 0(X,,)-measurable for all £ € P.
As the final step, we show that E, [1g| Fy] is 0(X,,)-measurable for all B € G,,. Let

L:={Be€g,:E,[1p|F,] is 0(X,)-measurable.} .
We have already seen that P C £ in the previous paragraph. Now, we claim that £ is a A-system on €.
1. It’s clear that @ and €y belongs to L;

2. Assume that A, B € £. Then,

P,-a.s.

E, [ﬂB\A‘ ]:n] = Eu [ 1] Fnl —E, [La] Fn]
is also o (X, )-measurable, thereby B\ A € L;

3. Let {Ax},, be a sequence in £ with Ay 1 A as k — co. From 14, T 14 as k — oo, we obtain from

the monotone convergence theorem for conditional expectations ( Theorem 4.1.9-(c) in [1]) that
By (L4, | Fn] 1 Ey[La] Fo

IP,-almost surely, as k — oo. Since each E, [14,|F,] is 0(X,)-measurable, E, [14| F,] is also o(X,,)-

measurable.

From the above observations, £ is a A-system on . Due to the w-\ theorem (Theorem 2.1.6 in [1]), we
get £ = 0(P) = Gy,. This completes the proof of Claim 1.
O



According to Claim 1, we know that E, [1p|F,] is 0(X,,)-measurable. Thus,

P,-a.s.

E.[1p| Fa] "= Eu[lp[o(Xn)] (4)
by Theorem 4.1.12 in [1]. Plugging (4) into (1) yields

P, {ANB|X,} =E,[1a-E,[1p|F]|o(X,)]
— B, [1a - B, [15]0(X,)]| 0(X0)]
DB, [14] 0 (X)) E, [Lp| 0(X,)]
= P, { A] X} P { B| X}

IP,,~almost surely, where the step (e) is due to Theorem 4.1.14 in [1], and we are done.

Hereafter, we assume throughout the rest of homework problems that the underlying state space S is
countable and it is equipped with the discrete o-field 25. Since (S, 28) is a nice measurable space, it admits the
canonical construction in Section 5.2 in [I] of the probability measure P, on the sequence space (g, Foo)
so that the sequence of coordinate maps {X;(w) := wy} -, is a homogeneous Markov chain with initial

distribution x and transition probability p(-,-) : S x 25 — [0,1]. We remark that it is conventional to write
p(z,y) := p(z,{y}) for 2,y €.

Problem 2 (Ezercise 5.2.4. in [1]: First entrance decomposition).

We begin the proof by defining the functions Y,,, : Q9 = R, m € Z,, by

Ym(w) = ﬂ{Xn_m:y} (w) = ﬂ{wn_m:y}, Yw € Qo,

if 0 <m < n, and Y;,(w) := 0 for all w € Qp otherwise. It’s clear that all Y, are bounded and measurable

functions on the sequence space (€, Foo). Also, according to the definition of the hitting time T, we have

{Ty:n}:{Xl GS\{y}a 7Xn—1 ES\{y}aXn:y}efn

for every n € Zy, where {F, =0 ({ Xy :k € [0:n]})} 2, denotes the canonical filtration of {X,}, 2.
Thus, Ty, is a stopping time with respect to the canonical filtration {F,},- . Moreover, one can see that if
Ty(w) < 400, then

(Y1, 00r,) (W) = Lix, =y (W), Yw € Qo. (5)



Hence, we have

= Eu [Lix,=y) L1, <100}

A A
> o
= N

= b [(YTy © eTy) ’ H{Ty<+oo}]
=By [Eo [ (Y1, ©01,) - L7, <00} | P13 ]]

2 Ex [Ee [ (Yr, 001,) | 71] Vg <o)
DB, [Exy, [Y5,] - 1r,<oct]

Eq [By [Y7,] - Lizy <too)]

o0

Z Ey [YTy] ’ H{Ty:m}

m=0 J

E; [By [Y1,] - Lizy=m)]

e

Eq

[
NE

0

m

M

Ey Y] - Es [Liz,—m}]

3
I

ol

P {Ty = m} Py {Xpn—m =y}.
—_————

= P (y,y)

3
]
o

Here, the above steps (a)—(f) can be justified as follows:
(a) {Xn =y} C{T, < +oo};
(b) the equality (5);
(c) {T, < +oco} € Fr,. To see this, we notice that
{Ty < +oo}N{Ty =n} ={T, =n} € F,, Vn € Z,
since Ty, is a stopping time with respect to the filtration {Fy,},~ ;
(d) the strong Markov property (Theorem 5.2.5 in [1]);
(e) On the event {T}, < 400}, we have X7, = y;
(f) the Fubini-Tonelli’s theorem, since the summands are non-negative.
This establishes the desired result.

Problem 3 (Ezxercise 5.2.6. in [1]).

Since S\ C is finite, inf {P, {Tc: < +o0} : 2 € S\ C} > 0. Take € := 3 inf {P, {Tc < +o0} : 2 €S\ C} €
(0,1). As P, {Tc < 400} = limy,y00 1 Px {Tc < n} > € for every € S\ C, there exists a positive integer
N(x) € N such that P, {Tc < n} > € for every n > N(z). Let N := max{N(z):x €S\ C} € N. Then, we
have

P {Te>N}=1-P,{Tc <N} <1-—-¢ (6)



for every x € S\ C, since N > N(x) for all z € S\ C.
Now, define Y : Qg — R by

Y(w) = ﬂ{TC>N}(w) = ﬂﬂi\’:l{xieg\c}(w)’ Yw € Q.

Then, Y is clearly a bounded, measurable function from the sequence space (Q, F) to (R, B(R)). Moreover,

we can see that for every k > 2,

(Y o e(kfl)N) (w) = ]]_ﬂkN {Xieg\c}(w),Vw € Qo,

i=(k—1)N+1

thereby we get

(Yo a(kfl)N) (W) - Lizesr-nny (W) = ﬂ{TC>(k—1)N, Xh—1)n+1€S\C, X(k—1)n+2€S\C, -+, XkNGS\C}(w)
= I xiesvoy (@) (™)
= ]l{Tc>kN}(w)

for all w € Q. Therefore, we obtain for every y € S\ C' and k > 2 that

]P)y {TC > kN} = Ey [R{TC>kN}}

YE, [(Y 0 0p-1w) - Lrpse-1yny]

=Ey [Ey [(Y 0 0_1yn) - Lizes-1)ny | Fe-1)nv] ]
()

= Ey [Ey [Y 0 0p—1)n| Fr-1)n] Lizos(s-1)3y]
=Ey |:EX(I€71)N [Y]- I[{Tc>(/f—1)N}]

= E, |:EX(k—1)N Y] 1{Tg>(k—1)N, X(k,l)NES\C}}

zeS\C

= Z Ey [EX(k—l)N [Y] ’ ]l{TC>(k—1)N, X(kfl)N:x}]

[E. [v]

Il
(]

’ ]l{Tc>(k71)N, X(k,1>N:x}:|

- ]Ey |::H-{TC>(]€71)N7 X(k—1)N=x}} : ]P)ﬂi {TC > N}
zeS\C

—~~

f)

IN

(1—¢) Z Ey []l{Tc>(k—1)N, X<k,1)N:x}]
zeS\C

()
(1 - G)Ey Z H{Tc>(k*1)N, X(kfl)N:I}
zeS\C

- (1 - G)Ey |:]]'{Tc>(k—1)N7 X(k—l)NES\C}]

—~
=

= (1= OEy [Lizps-1)ny)
=1 =P, {Tc > (k—-1)N},

Here, the above steps (a)—(h) can be justified as follows:



(a) the equality (7);

(b) {To > (k= 1N} = N5 {X; €8\ C) € Fropw

(c) the Markov property (Theorem 5.2.3 in [1]);

(d) {Te > (k—1)N} C {Xp_1yn €S\ C};

(e) we can change the order between expectation and summation since S\ C is finite;
(f) the bound (6);

(g) we can change the order between expectation and summation since S\ C' is finite;
(h) {Te > (k—1)N} C {X—1yn € S\ C}.

We remark that {F,} -, denotes the canonical filtration of the given Markov chain {X,} ", i.e., F,, =

o (Xo, X1, ,Xy) for every n € Z,. Hence, we can deduce inductively that

Q)
P, {Tc > kN} < (1— )" 1. P, {Tc > N} < (1 —¢)F

for every k € N and y € S\ C, where the step (i) is simply the bound (6). This completes the proof of the

desired result.

Problem 4 (Ezercise 5.2.7. in [1]: Exit distributions).
(i) To begin with, we can see for every C' C S that the first visiting time to C, Vi, is a stopping time
with respect to the canonical filtration {F;, := o (Xo, X1, -+, Xpn)}—- To see this, we notice that

{Ve=n}={XoeS\C,--- ,X,,_1€S\C, X,, e C} € Fp, Yne€Z,.
Now, we define a function Y : 9 — R by

1 if inf{n>0:X, € A} <inf{n >0: X, € B};
)= l{VA<VB}(W) - 0 otherwise
wise.

Since both V4 and Vg are stopping times with respect to {F,}-, defined on the sequence space (o, Fxo),

{Va <V} € Foo. Thus, Y : (Q, Fo) — (R, B(R)) is a bounded, measurable function, where B(R) denotes
the Borel o-field on R. Moreover, we may observe that if Xg € S\ (AU B), then

1 if inf{n>1:X,€ A} <inf{n>1:X, € B};
(Y ob1)(w) =

0 otherwise.

1 ifinf{n>0:X, €A} <inf{n>0:X, € B}; (8)

0 otherwise.



for all w € Q. Hence, the following holds: for every z € S\ (AU B),

h(z) =P, {Va <V} =E,[Y]

Wk, [y oo

=E, [E; [Y 0 01| Fi]]

R, [Ex, [V]]

=E, | Y Ex, [Y] Lix,—y
yeS

O3S, [Ex, V] 1iximy]
yEeS

= > E. [Ey Y] Lix,—y)]
y€eS

= P {X1 =y} P, {Va < V5}
y€eS

= p(=,y) = h(y)

= p,y)h(y),

y€eS

Here, the above steps (a)—(c) can be verified as follows:
(a) it follows from (8) together with the assumption z € S\ (AU B);
(b) the Markov property (Theorem 5.2.3 in [1]);
(¢) the Fubini-Tonelli’s theorem, since the summands are non-negative.

(ii) Let p denote the initial distribution of the Markov chain {X,,}°2, h: S — R be any bounded function

n=0’

satisfying the given condition (x), and M,, := h (X,v, ) for n € Z,. Then, one can see that for n € N,

M, = h(Xn)]l{VAuBZH} +h (Xvayp) Lvaop<n)

n—1 (9)
= (Xn) Ly, p>ny + Z h(Xvaus) Lvaus=t)-
k=0

It’s clear that M,, € L' (Q0, Foo, Py), i-e., My, is P,-integrable as h is bounded. From (9), we reach

n—1

E, [ M| Fra] = Ey [h(Xn)l{VAUan}‘ “’r"_l] + Z E, [h (XVAuB) l{VAUB:k}‘ f”—l]
=0

n—1

=By [M(X) Vv pzny | Fooa] + Y By [MX0) Ly, piy| o] (10)
k=0

n—1
@ E, [h(Xn)]l{VAuBZn}‘ ]:n—l] + Z WX k) Ly s =k}
k=0

P,-almost surely, where the step (a) follows from the fact h(Xy)1qy, =k} € Fr © Fn-1 for every k € [0 :
n — 1], which holds since Vaup is a stopping time with respect to the canonical filtration {7, },~,. At this

point, we claim the following statement.



P,-a.s.

Claim 2. B, [M( X)Ly, pont| Fao1] "= h(Xn1)Liv, pon)-
Proof of Claim 2.
To begin with, we note from {Vaup > k} = {Xo € S\ (AUB), X1 € S\ (AUB), -+, X;-1 €S\ (AUB)}

that
k—1

Livaossk @) = ] Tsvaus) (w)) (11)
=0

for all w € Qg and k € N. Let Py, := {{WGQ():WO GAO,wl EAl,-" , Wk GAk}:Ao,Al,'-- ,Ak 68:28}
for k € Zy. Then, Py, is a w-system on Qg with Fi, = o (Xo, X1, -+, Xk) = 0(Py). Firstly, we claim that

By [M(Xn) Lvaupony - Lo = By [M(Xn-1) Ly, p2ny - 1] (12)
for all B € P,_1. Given any F € P,,_1, it can be written by
E={Xoec Ay, X1 €A, -, Xp_1 €A1}
for some Ag, A1, -, An_1 € S = 25. Therefore,

(e)
By [h(Xn) Ly, pon} - 1E] = Ey

n—1
T (1svaumyyna, (Xx)) h(Xn)]
k=0

f
- /Su(dﬂfo)ﬂ{S\(AuB)}on (o) [/Sp(xoadxl)ﬂ{S\(AUB)}ﬁAl (1)

{ g [ /S p(xnl,dxn)h(xn)] ”

= > p(zo) > plxo, )
z0€{S\(AUB)}NAg z1€{S\(AUB)}NA;

> p(Tn—2, Tp-1) [Z p(Tn-1, :cn)h(:vn)]

xn_le{S\(AUB)}ﬂAn_l Tn €S
L L = h(zn-1) I CEY
Y ) S plwea)

zo€{S\(AUB)}NAg z1€{S\(AUB)}NA;

. Z (T2, xnl)h(ajnl)] . ] ]
L Tn—1€{S\(AUB)}NA,_1

= /Sﬂ(dfﬂo)]l{S\(AuB)}on(xo) [/Sp(ﬂfo,dxl)]l{S\(AuB)}nAl(ﬂh)

N [/p(mn_2’dm”_l)h(xN—l)]L{S\(AUB)}mAn_I(m‘n_l)} H

S

n—2
1T (Usvavmyyna, (X)) (H{S\(AUB)}ﬂAnl(Xnl)h(an))]
k=0

O]
= Eu [h(Xn—l)]l{VAuan} ’ ]lE] )

Each of the steps (e)—(i) can be justified as follows:



(e) the equality (11);
(f) the equation (5.2.3) in [1];
(g) from the assumption, we have for every z,—1 € {S\ (AU B)} N A,_1,

p(xn—l) - Z p(xn—lvxn)h(xn)~

Tn €S
(h) the equation (5.2.3) in [1];
(i) the equality (11).

Finally, we set £y, := {E € Fj : By [h(Xpy1) Ly, pokr1y - Le] = By [M(Xk) Ly, pokt1y - 1]} for each
k € Z4. Then, the equation (13) yields P,,—; C L,_1. Now, we claim that £,_1 is a m-system on .

1. Since Pp_1 C L,,—1, both @ and g belong to L£,,_1;
2. t E,F € L,y with E C F, then we obtain from the linearlity of expectations that
K, [h(X")]l{VAuBZ”} ’ ]lF\E] =Ky [h(X”)ﬂ{VAuBETL} ’ ILF] —E, [h(Xn):H‘{VAUBZW} ) ILE}
E, [h(X”—l)ﬂ{VAuBZn} ’ ILF] —Ey, [h(Xn_l)]]'{VAuBZn} ) ]lE]
E

=By [M(Xn-1)L{vaup>ny  Lrve]

thereby FF\ E € L,,_1.

3. Let {Ex},2, be a sequence in £,,_; with E 1 E as k — oo. Then, 1g, hopo 1g, and so the bounded

convergence theorem yields

E, [h(X”)]l{VAuBZn} ) HE] = lim E, [h(X”)]l{VAUBZ”l} ) ﬂEk}

k—oo
= klggo Ey [h’(X”—l)ﬂ{VAuBZTL} ’ ]lEk]
=E, [h(X”—l)]l{VAuan} ’ ]lE] )
thereby F € L,,_1.
Hence, £,,_1 is a A-system on Q with P,_1 C £,_1 and so we get L,_1 = 0(Pn—1) = Fn—1 by the m-A
theorem (Theorem 2.1.6 in [1]). Since M(Xn—1)L{v,, z>n) = M( Xy (1- L{v,,p<n—1}) I8 Fn_1-measurable,

it establishes the desired claim.
O

Putting Claim 2 into the equation (10) yields

n—1
EM [Mn’ Fn—l] = EM [h<Xn)]l{VAuB2n}| ‘Fn_l] + Z h(Xk)]l{VAUB:k}
k=0
n—1
= h(anl)ﬂ{VAuBZn} + Z h(Xk‘)]]‘{VAuB:k}
k=0
n—2
= W X)Ly, pzn1y + D X)Ly, k)
k=0

= (X(n-1)AVass) = Mn—1



PP,-almost surely. Hence, the stochastic process {M,, = h (Xnav,,5)} e is @ martingale with respect to the

canonical filtration {F,} -, for any bounded function h : S — R satisfying the condition (x).

(iii) Let g : S — R be any other function satisfying the condition (x), and g(z) =1 if x € A; g(x) = 0 if
x € B. Since Q)
sup{lg(x)| : x € S} < max {1, sup {|g(z)| : = €S\ (AU B)}} £ +2x,

where the step (j) holds since S\ (A U B) is finite, g is a bounded function and so is h by the same argument.
If we let f := g—h, then f : S — R is a bounded function satisfying the condition (x) together with f(z) =
for x € AU B. As we have shown that the second statement (ii) of this problem is valid for any bounded
function from S to R which satisfies the condition (), {f (Xnav,p)},—o is a martingale with respect to the
canonical filtration {F,} " ;. Thus for any € S\ (AU B), we have

f(z)

E$ [ XO/\VAuB)]

(14)

(
=E, [ ( n/\VAuB)]
(X

=E,; [f )]]‘{VAUB>n}] +E; [f (XVAUB) H{VAUBSTL}]

k
(:) Ey [f( )]]'{VAUB>”}] J

where the step (h) follows from the fact that if V4up < 400, then Xy, , € AU B and so f (Xvy, ,) =0.
Since f is bounded, L :=sup{|f(z)| : ¢ € S} < +00. Then, one has from (14) that

1f(@)] = B [£(Xn) Ly pony]|
<E; [|f(Xn)| ]]‘{VAUB>'”}]
< L Px {VAuB > ’I’L}

O 1. P, {Taos > n}

for every n € Z., where the step (1) comes from z € S\(AU B). As S\(A U B) is finite and Py, {Taup < +o0} >
0 for ally € S\ (AU B), we can apply Problem 3 (Ezercise 5.2.6 in [1]) at this point: there exists an N € N
and € > 0 such that P, {Taup > kN} < (1—¢€)* forall k € Nand y € S\ (AU B). Putting n = kN into the
bound (15) yields for every z € S\ (AU B) that

/(@) < L1 — ) (16)

for all k € N. Letting k — oo in (16), we can conclude that f(z) =0 for all z € S\ (AU B). Consequently,
we have f(x) = g(z) — h(z) = 0 for all z € S, thereby g = h on S. This completes the proof of the third

statement.

Problem 5 (Ezercise 5.2.8. in [l]).
Let S:=[0: N] ={0,1,--- ;N — 1}. Then, one can see that

o {0} N{N} =g,
e S\{0,N}={1,2,--- , N — 1} is finite;

e Since Vo A Vy = V{O}U{N}a P, {V{O}U{N} < +OO} =P, {Vo AV < +o0} >0 forall z € S\ {0, N}.

10



According to the above observations and the third problem (3) of Problem 4 (Ezercise 5.2.7 in [1]), we
know that the function h : S — R defined by h(x) := P, {Vy < W}, x € S, is the unique function such that
h(0) =0, h(N) =1, and
Zpa:y ), Ve e S\ {0, N}, (17)
y€eS
where p(+,+) : S x S — [0, 1] denotes the transition probability of given homogeneous Markov chain.
Now, let g : S — R to be g(z) := §, © € S. It’s clear that g(0) = 0 and g(N) = 1. We claim that the
function g : S — R satisfies the equation (17). Since {X,,} > is a martingale with respect to the canonical
filtration {F, := o (Xo, X1, , Xyn)},—, we have

anl — Eu [Xn| ]:nfl]

D L=y || Fo

yeS

S B [XnT (x| Foi]

yEeS (18)
=D Eu [ylix,=y| Foi]

yeS
:Zy'Pu{Xn :y‘]:n—l}

y€eS

Sy p (Xaery)

yeS

and the step (a) is valid
since S = [0 : N] is finite, the step (b) follows from the assumption that {X,} °, is a homogeneous Markov

,-almost surely, where £ is any initial distribution of the Markov chain {X,,}>7 ),

chain with transition probability p(-,-). Thus, it follows from (18) that

Tr = / anl(ﬂp“
{Xn_1=a}

:‘/' > yp(Xn-1,y)| dP,
{Xn—1=a}

yes (19)
~Yy / Xa-1,9) dP,
yeS Xn-1= m}
=> y-plx,y)

yeS
for every x € S, since {X,,—1 = 2} € F,,—1. Dividing the equation (19) by N yields
Zp (x,y)g(y), Yz €S,
y€eS

thereby the function g : S — R satisfies the equation (17). From the uniqueness of such a function h, one

can deduce g = h on S. Hence,
T
P {Viy < Vo = h(a) = g(a) = 1
forallz € S=1[0: NJ.

11



Problem 6 (Ezercise 5.2.11. in [1]: Exit times).

(i) Fix any € S\ A, and consider the following two cases:
(Case #1) P, {V4 = +oo} > 0: Define Z : Qy — R by Z(w) := 1{y,— o0} (w) for w € Q. Then for every x € S\ A,

P, {V4 = +o0} = E, |Z]

Wk, (Z06]

© (20)
= ) Ei [Ex, [Z] 1=y

y€eS
= B [By [Z] 1ix,—y)]

yeS

yeS  _ 7

= p(z,y)

= > p(z,y) P, {Va = +oo} > 0.

yeS

Here, the above steps (a)—(c) can be justified as follows:

(a) Sincez € S\ A, Z = Z 00, if X = x;

(b) Since Z is a bounded, measurable function defined on the sequence space (g, F), we can apply
the Markov property (Theorem 5.2.3 in [1]) and the step (b) follows;

(¢) the Fubini-Tonelli’s theorem, since the summands are non-negative.

The inequality (20) implies p(z,y) - P, {Va = +00} > 0 for some y € S. As a consequence, we have

@
p(z,9)9(y) = p(x,y) - By [Va] = p(z,y) - By [Va - Lv,—yoo}] = 00,
where the step (d) holds since p(x,y) > 0 and P, {V4 = 400} > 0. Hence, we arrive at

1+ Zp(ﬂc,y)g(y) = 400 ) E; [Va] = g(=),

yeS

where the step (e) follows from the assumption P, {V4 = 400} > 0.

(Case #2) P, {V4 = 400} = 0: Then, we have from the monotone convergence theorem that

f .
(:) ]Egg [VA : ]l{VA<+oo}] = nll}lgo T EZ‘ [VA : l{VASn}] ) (21)

g(x) =E, [VA]
where the step (f) is due to the assumption P, {V4 = 400} = 0. Define Y;, : Q9 — R for n € Z by
Yo (w) := Va(w) - Ly, <ny (W), Yw € Q.

12



As |Y,| = ‘VA . ﬂ{VAgn}| <n-lgy,<p on Qo, every Y, is a bounded, measurable function defined on
the sequence space (€, Foo). One can see that if Xp € S\ A,

(Yo 061) (w) = Va (01(w)) - Ly, (01 (w))<n}

—~
~

= (Va(w) = 1) Ly, (w)—1<n)
= Va(w) Ly, <niy (W) — Ly, <ngny (W)
=Ynr1(w) — Ly, <ngy (W)

for every w € Qg and n € Z,, where the step (g) holds since if V4(w) > 1, then Va(w) = V4 (01 (w))+1.
Thus, Y, = (Yp—1061) + Ljv,<py on Q. Hence,

E, [VA ’ ﬂ{VASn}] =K, [Yn]
=E, [Yn—l © 01] + P {VA < n}
= Ex [Ex [Yn—l (¢] 91’./_“1“ + ]P)x {VA § Tl}

Y E, [Ex, [Ya1]) + Po {Va <n},

where the step (h) is due to the Markov property ( Theorem 5.2.3 in [1]). Here, {F, := o (Xo, X1, -, Xn)}oo

n=0

refers to the canonical filtration of {X,,} ;. By letting n — oo in the equation (22), it follows that

o) 2 lim 1 E, [Va - Ly, <]

= nh_{glo T Ee [Ex, [Yn-1]] + Pa{Va < 400}
6))
= Ey [Exl [VA ) l{VA<+OO}]] +1

= Ez ZEXl [VA ' ]]-{VA<+OO}] ]]-{X1:y} +1
yeS

k
(:) Z]Ea; [E)ﬁ [VA : IL{\/A<+oc>}] IL{X1=y}] +1
y€eS

=Y Eu[EBy [Va- Livuciooy] Liximyy] +1
yeS

= ZP(QU:y)Ey [VA : H{VA<+OO}] +1
yeS

)
= Zp(w7y) Ey [VA] +17

yes = g(y)

thereby it establishes our desired result. The steps (i)—(1) can be validated via the following reasons:

(i) the equality (21);

)
(j) the monotone convergence theorem together with the assumption P, {V4 = +oo} = 0;
(k) the Fubini-Tonelli’s theorem, since the summands are non-negative;

)

(1) to see this step, we should verify that P, {V4 < +oo} =1 for all y € S. By subtracting (20) from

13



1, we obtain

1::Px{v% <‘+OO}
::1'_]Pr{‘61::‘FOO}
S o)~ Sl ) By [V = 420}

yeS yeS

= Zp(:c,y) Py {Va < +o0} (23)
yEeS

<> p(x,y)

yeS
=1,

so all the inequalities in (23) are in fact equalities. Thus, we get P, {V4 < +o00} =1for all y € S.

Combining all the arguments of the above two cases completes the proof of the problem (i).

(ii) For convenience, we define M,, := g (Xpav,) + (n A V4) for n € Z4, for any function g : S — [0, +00)
satisfying the given condition (x). Then, M,, can be written by

My ={g(Xn) + 0} Livsny + O {9(Xk) + £} Ly, iy (24)
k=0

Let L :=sup {|g(x)| : x € S\ A}, which is finite since S\ A is a finite set. If V4 > n, then X,, € S\ 4 and it
follows that

{9(Xn) + n} Livysny| < (L +n) - Ly, sn- (25)

14



Also, since {Va =k} ={Xo €S\ A4,--- ,Xk_l €S\ A, Xy, € A}, we have

B, [9(Xi)liv,—ky] = Eyu H Ig\a(X5) {1a(Xk)g(Xk)}

<E, H Ig\a(X;)g(Xk)

ST o) [ S p(xoa1)

z0€S\A z1€S\A

> plarawp) {Z p(xkl,wk)g(ﬂﬁk)]

i1 ES\A TR €S

o 26
= g(zk-1) i 44 (26)

w Z (o) [Z p(zo, 1)

x1€S\A

|: |: Z p(Tr—2, xkl)g(xkl)] . ] :|

k
;Eu {Z Is\a(X;)g(Xk-1)

=Eu [9(Xk-1)Liv,=ny]

< L=k}
Here, the above steps (m)—(p) are based on the following reasons:
(m) the equation (5.2.3) in [1];
(n) the function g obeys the condition (x);
(o) the equation (5.2.3) in [1];
(p) if Va =k, then Xj 1 € S\ A and so g(Xy1)Lqy,—py < L - Lyy,—p)-

Combining (24) together with two pieces (25) and (26) yields for every n € Z,

M| < (L+n0)Vyusny + Y (LK) gy, < L+n,
k=0

P-a.s.

thereby M, € L' (Qo, Feo, P, i.e., each M,, is IP,-integrable. Now, we will prove that E, [M,| F,,—1] "=
M, _1 for all n € N. We begin by noting that

n—1

E,LL [Mn| fnfl] = E,LL [{Q(Xn) + n} H{V,an}‘ ]:nfl] + ZEM [{g(Xk’) + k} ]l{VA:k}’ ]:nfl]

k=0
n—1 (27)

Vg, [{g(X) + 1} Lvyom| Faoa] + 3 {0(X0) + K} Liv—sy
k=0
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P,-almost surely, where the step (q) follows from the fact that {g(Xx) + k} 1y, —p) is Fp-measurable for
k € [0:n—1]. At this point, we claim the following statement.

Claim 3. E,, [{9(X;) +n} :H‘{VAZTL}| Fn-1 {9(Xn—1) + (n = 1)} Liv,>ny-

Proof of Claim 3.

To begin with, we notice that {g(Xy,—1) + (n — 1)} 1y, >y} is F—1-measurable. As in the proof of Claim
2, let Py, := {{w €Qo:wy € Ap,w1 € Ay, -+ ,wi € A}t Ag, Ay, J AR €S = 28} for k € Z,. Then, Py is
a m-system on Qy with Fj, = o(Py). Also, define

Ly = {E € Fr: By [{g(Xps1) + (b + D} Lvzngny - 1e] = B [{9(X0) + 5} Ly opny - 1]} V€ 2y

It suffices to show that £, 1 = F,_1. As a next step, we prove P,,_1 C L,,_1. Given any E € P,,_1, it can

}IP -a.s.

be written by

E:{wEQoinEAo,LUlGAl,-” wn71€An,1}
for some Ag, Ay, -+, A1 € S =25 It’sclear from {Vy > n} = {Xg € S\ A, X1 € S\ A4,---, X, 1 €S\ A}
that
n—1
Liv,snp(@) =Y Igialws), Yw € Qo.
k=0

Hence, we arrive at

E, [{Q(Xn) +n} Lvy>ny - HE]

(H Lis\a)nay Xk:)) {9(Xn) +n}
(2 Z ﬂ(!EO) |: Z p(mo’zl)
x A)N

0€(S\A)NAg 21€(S\A)NA1
o Z P(Tn—2,Tn-1) [Z p(xn—1,2n) {g(zn) +n}|| -
Tn—1€(S\A)NAp_1 Tn €S

—

2 Z) ) p(zo) { (Z p(xo, 1)

zo€(S\A S\A)NA;

[ [ Z p(xn27xn1){g($nl)+(n1)}] ]]
Tn—1€(

S\A)mAnfl

n—1
<H Lis\a)na, (Xk)> {9(Xpn-1) + (n — 1)}]
k=0

=E, [{9(Xn-1) + (n = 1)} Ly, >0y - 1],

thereby E € L£,_1. Each steps (r)—(t) are valid since:

(t)

(r) the equation (5.2.3) in [1];

(s) for z,—1 € S\ A, we have

S p@a1, @) {g(aa) + 0} = +(n—1)

Tn €S

1+ Z P(Tn—1,Tn)

Tn €S

=g(zp—1)+ (n—1),
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because the function g satisfies the condition (x);
(t) the equation (5.2.3) in [1].

Therefore, P,—1 C L,_1. From the same argument as in the proof of Claim 2, one can easily see that £, _1
is a A-system on . Employing the 7-\ theorem, we eventually obtain £, 1 = 0(Pn—1) = Fpn—1, and this
completes the proof of Claim 3.

O

Finally, we can finish the proof of the statement (ii) of this problem. Indeed, from (27) one has

n—1

E, [My| Fr1] = E, [{Q(Xn) +n} H{VAZTL}| ]:nfl] + Z {9(Xy) + k} H{VA:k}
k=0
n—1

(w)
= {9(Xp-1) + (n = 1)} Lyy,ony + Z {9(Xk) + K} Ly, =y
k=0
n—2

={9(Xn-1)+ (n =D} Lyvy>n1y + Z {9(Xk) +k} Lpv,—iy
k=0

= n—1

P,,-almost surely, where the step (u) follows from Claim 3. So, {M, = g (X,av,) + (n A Va)} 2, is a martin-
gale with respect to the canonical filtration {F, = o (Xo, X1,--- , Xy)},—, for any function g : S — [0, +00)
that satisfies the condition (). As a final remark, we note that the statement (ii) also holds for any bounded
function ¢ : S — R which satisfies the condition (). The P,-integrability is immediate from the boundedness
of g, and the remaining steps are completely identical. Hence, {g (Xnav,) + (n A Va)} 2, is a martingale
with respect to the canonical filtration {F,},; for any non-negative or bounded function g : S — R obeying
the condition (x).

(iii) Let A : S — R be any function satisfying

h(z) =1+ p(z,y)h(y), Yz € S\ 4,
yeS
together with h(x) = 0 for all z € A. So, sup,eg |h(7)] = sup,eg 4 [h(z)] < +00, since S\ A is finite. Thus,
h is bounded and likewise, g is also a bounded function which satisfies the condition () and g(x) = 0 for all
x € A. As the second statement (ii) of this problem holds for any bounded function satisfying the condition
(%), both {g (Xnav,) + (nAVA)}2 o and {h (Xyav,) + (n AVa)}2, are martingales with respect to the

canonical filtration {F, = o (Xo, X1, , Xy)},—y- Now, define f:=g—h:S = R. Then, {f (Xnrv,)} oy

also forms a martingale with respect to the canonical filtration {F,}, ,, since

f (Xnava) = {9 (Xnavy) + (A VA)} = {h (Xnavy) + (R AVA) ).
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Hence for any = € S\ A, we have

f(x) = Eq [f (Xonv,)]

(L) Eg [f (Xn/\VA)]

n 28
=E, [f(Xn)]l{VA>n}] + ZEz [f(Xk)]l{VA:k}] *
k=0

(2) E, [f(Xn)]l{VA>n}] )

for every n € Z, where the step (v) holds since { f (X,av,)}o— is a martingale with respect to {F,},—,, and
the step (w) is owing to the fact that if V4 = k, then X}, € A together with the fact f(x) = g(z) —h(z) =0
for all x € A. As both g and h are bounded, so is f. Thus, L := sup{|f(x)|: x € S} < +00. Then, we
obtain from (28) that

forallz € S\ Aand n € Z.

On the other hand, it’s clear that S\ A is finite, and P, {T4 < 400} =P, {V4 < +o0} < +0o0 for every
x € S\ A from the assumptions of the problem. So, we can apply Problem (3) (Ezercise 5.2.6. in [1]): there
is an N € N and € > 0 such that P, {T4 > kN} < (1 —¢)* forall k € Nand y € S\ C. Plugging n = kN
into the bound (29) produces for every x € S\ A,

1f(@)| =L -Pu{Va>kN}=L P, {T4>kN}<L(1—e)"

for all k € N. By letting k& — oo, it gives f(z) = 0 for all z € S\ A. Hence, f = g —h =0 on S, thereby
h(z) = g(x) = E, [V4] for all x € S. This establishes our desired result.
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