MAS651 Theory of Stochastic Processes
 Homework \#2

20150597 Jeonghwan Lee

Department of Mathematical Sciences, KAIST

March 17, 2021

Throughout this homework, let \mathbb{Z}_{+}denote the set of all non-negative integers, and $[a: b]:=\{a, a+1, \cdots, b-1, b\}$ for $a, b \in \mathbb{Z}$ with $a \leq b$. We also write $[n]:=[1: n]$ for $n \in \mathbb{N}$. Moreover, \biguplus denotes the disjoint union, and given a set A and $k \in \mathbb{Z}_{+},\binom{A}{k}:=\{B \subseteq A:|B|=k\}$. Also, we use the symbol \mathbb{S} instead of S to denote the underlying state space of stochastic processes.

Problem 1 (Exercise 5.2.1. in [1]).
To begin with, we introduce some notations: $\mathcal{F}_{n}:=\sigma\left(\left\{X_{k}: k \in[0: n]\right\}\right)$ and $\mathcal{G}_{n}:=\sigma\left(\left\{X_{k}: k \geq n\right\}\right)$ for $n \in \mathbb{Z}_{+}$. Given a fixed time step $n \in \mathbb{Z}_{+}$, and two events $A \in \mathcal{F}_{n}$ and $B \in \mathcal{G}_{n}$, we have $\mathbb{1}_{A \cap B}=\mathbb{1}_{A} \mathbb{1}_{B}$, we obtain

$$
\begin{align*}
\mathbb{P}_{\mu}\left\{A \cap B \mid X_{n}\right\} & =\mathbb{E}_{\mu}\left[\mathbb{1}_{A \cap B} \mid \sigma\left(X_{n}\right)\right] \\
& =\mathbb{E}_{\mu}\left[\mathbb{1}_{A} \mathbb{1}_{B} \mid \sigma\left(X_{n}\right)\right] \\
& \stackrel{(\text { a) }}{=} \mathbb{E}_{\mu}\left[\mathbb{E}_{\mu}\left[\mathbb{1}_{A} \mathbb{1}_{B} \mid \mathcal{F}_{n}\right] \mid \sigma\left(X_{n}\right)\right] \tag{1}\\
& \stackrel{(\text { b) }}{=} \mathbb{E}_{\mu}\left[\mathbb{1}_{A} \cdot \mathbb{E}_{\mu}\left[\mathbb{1}_{B} \mid \mathcal{F}_{n}\right] \mid \sigma\left(X_{n}\right)\right]
\end{align*}
$$

\mathbb{P}_{μ}-almost surely, where the step (a) follows from Theorem 4.1.13 in [1], and the step (b) holds by Theorem 4.1.14 in [1] together with the fact $A \in \mathcal{F}_{n}$.

Claim 1. For any $B \in \mathcal{G}_{n}, \mathbb{E}_{\mu}\left[\mathbb{1}_{B} \mid \mathcal{F}_{n}\right]$ is $\sigma\left(X_{n}\right)$-measurable.
Proof of Claim 1.
Let $\mathcal{P}_{k}:=\left\{\left\{\omega \in \Omega_{0}: \omega_{n} \in A_{0}, \omega_{n+1} \in A_{1}, \cdots, \omega_{n+k} \in A_{k}\right\}: A_{0}, A_{1}, \cdots, A_{k} \in \mathcal{S}\right\}, k \in \mathbb{Z}_{+}$, where $(\mathbb{S}, \mathcal{S})$ is the underlying nice state space and $\left(\Omega_{0}, \mathcal{F}_{\infty}\right)$ denotes the sequence space constructed from $(\mathbb{S}, \mathcal{S})$. Here, we recall that a measurable space $(\mathbb{S}, \mathcal{S})$ is nice (or said to be a standard Borel space) if there is a bijection $\varphi: \mathbb{S} \rightarrow \mathbb{R}$ such that both $\varphi:(\mathbb{S}, \mathcal{S}) \rightarrow(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ and $\varphi^{-1}:(\mathbb{R}, \mathcal{B}(\mathbb{R})) \rightarrow(\mathbb{S}, \mathcal{S})$ are measurable, where $\mathcal{B}(\mathbb{R})$ denotes the Borel σ-field on \mathbb{R} (See Section 2.1 of [1] for further details). Set $\mathcal{P}:=\bigcup_{k=0}^{\infty} \mathcal{P}_{k}$. Choose any two elements $C, D \in \mathcal{P}$. Then, $C \in \mathcal{P}_{k}$ and $D \in \mathcal{P}_{l}$ for some $k, l \in \mathbb{Z}_{+}$. We may write C and D by

$$
\begin{aligned}
& C=\left\{\omega \in \Omega_{0}: \omega_{n} \in A_{0}, \omega_{n+1} \in A_{1}, \cdots, \omega_{n+k} \in A_{k}\right\} ; \\
& D=\left\{\omega \in \Omega_{0}: \omega_{n} \in B_{0}, \omega_{n+1} \in B_{1}, \cdots, \omega_{n+l} \in B_{l}\right\},
\end{aligned}
$$

for some $A_{0}, A_{1}, \cdots, A_{k}, B_{0}, B_{1}, \cdots, B_{l} \in \mathcal{S}$. Assuming $k \leq l$, we have

$$
C \cap D=\left\{\omega \in \Omega_{0}: \omega_{n} \in A_{0} \cap B_{0}, \cdots, \omega_{n+k} \in A_{k} \cap B_{k}, \omega_{n+k+1} \in B_{k+1}, \cdots, \omega_{n+l} \in B_{l}\right\} \in \mathcal{P}_{l},
$$

thereby $C \cap D \in \mathcal{P}$. Thus, \mathcal{P} is a π-system on Ω_{0} with $\mathcal{G}_{n}=\sigma(\mathcal{P})$.
Now, choose any $E \in \mathcal{P}$. Then, it can be written as

$$
E=\left\{\omega \in \Omega_{0}: \omega_{n} \in A_{0}, \omega_{n+1} \in A_{1}, \cdots, \omega_{n+k} \in A_{k}\right\}
$$

for some $k \in \mathbb{Z}_{+}$and $A_{0}, A_{1}, \cdots, A_{k} \in \mathcal{S}$. Define a function $Y: \Omega_{0} \rightarrow \mathbb{R}$ by

$$
Y(\omega):=\prod_{j=0}^{k} \mathbb{1}_{A_{j}}\left(\omega_{j}\right), \omega \in \Omega_{0} .
$$

It's clear that Y is a bounded measurable function from the sequence space $\left(\Omega_{0}, \mathcal{F}_{\infty}\right)$ to $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$. Moreover, one can see that

$$
\begin{equation*}
\mathbb{1}_{E}(\omega)=\prod_{j=0}^{k} \mathbb{1}_{A_{j}}\left(\omega_{n+j}\right)=\prod_{j=0}^{k} \mathbb{1}_{A_{j}}\left(\left[\theta_{n}(\omega)\right]_{j}\right)=\left(Y \circ \theta_{n}\right)(\omega) \tag{2}
\end{equation*}
$$

for all $\omega \in \Omega_{0}$. Therefore,

$$
\begin{equation*}
\mathbb{E}_{\mu}\left[\mathbb{1}_{E} \mid \mathcal{F}_{n}\right] \stackrel{(\mathrm{c})}{=} \mathbb{E}_{\mu}\left[Y \circ \theta_{n} \mid \mathcal{F}_{n}\right] \stackrel{(\mathrm{d})}{=} \mathbb{E}_{X_{n}}[Y] \tag{3}
\end{equation*}
$$

\mathbb{P}_{μ}-almost surely, where the step (c) is due to (2), and the step (d) follows from the Markov property. Since the last term of (3) is $\sigma\left(X_{n}\right)$-measurable, we conclude that $\mathbb{E}_{\mu}\left[\mathbb{1}_{E} \mid \mathcal{F}_{n}\right]$ is $\sigma\left(X_{n}\right)$-measurable for all $E \in \mathcal{P}$.

As the final step, we show that $\mathbb{E}_{\mu}\left[\mathbb{1}_{B} \mid \mathcal{F}_{n}\right]$ is $\sigma\left(X_{n}\right)$-measurable for all $B \in \mathcal{G}_{n}$. Let

$$
\mathcal{L}:=\left\{B \in \mathcal{G}_{n}: \mathbb{E}_{\mu}\left[\mathbb{1}_{B} \mid \mathcal{F}_{n}\right] \text { is } \sigma\left(X_{n}\right) \text {-measurable. }\right\}
$$

We have already seen that $\mathcal{P} \subseteq \mathcal{L}$ in the previous paragraph. Now, we claim that \mathcal{L} is a λ-system on Ω_{0}.

1. It's clear that \varnothing and Ω_{0} belongs to \mathcal{L};
2. Assume that $A, B \in \mathcal{L}$. Then,

$$
\mathbb{E}_{\mu}\left[\mathbb{1}_{B \backslash A} \mid \mathcal{F}_{n}\right] \stackrel{\mathbb{P}_{\mu} \text {-a.s. }}{=} \mathbb{E}_{\mu}\left[\mathbb{1}_{B} \mid \mathcal{F}_{n}\right]-\mathbb{E}_{\mu}\left[\mathbb{1}_{A} \mid \mathcal{F}_{n}\right]
$$

is also $\sigma\left(X_{n}\right)$-measurable, thereby $B \backslash A \in \mathcal{L}$;
3. Let $\left\{A_{k}\right\}_{k=1}^{\infty}$ be a sequence in \mathcal{L} with $A_{k} \uparrow A$ as $k \rightarrow \infty$. From $\mathbb{1}_{A_{k}} \uparrow \mathbb{1}_{A}$ as $k \rightarrow \infty$, we obtain from the monotone convergence theorem for conditional expectations (Theorem 4.1.9-(c) in [1]) that

$$
\mathbb{E}_{\mu}\left[\mathbb{1}_{A_{k}} \mid \mathcal{F}_{n}\right] \uparrow \mathbb{E}_{\mu}\left[\mathbb{1}_{A} \mid \mathcal{F}_{n}\right]
$$

\mathbb{P}_{μ}-almost surely, as $k \rightarrow \infty$. Since each $\mathbb{E}_{\mu}\left[\mathbb{1}_{A_{k}} \mid \mathcal{F}_{n}\right]$ is $\sigma\left(X_{n}\right)$-measurable, $\mathbb{E}_{\mu}\left[\mathbb{1}_{A} \mid \mathcal{F}_{n}\right]$ is also $\sigma\left(X_{n}\right)$ measurable.

From the above observations, \mathcal{L} is a λ-system on Ω_{0}. Due to the π - λ theorem (Theorem 2.1.6 in [1]), we get $\mathcal{L}=\sigma(\mathcal{P})=\mathcal{G}_{n}$. This completes the proof of Claim 1 .

According to Claim 1 , we know that $\mathbb{E}_{\mu}\left[\mathbb{1}_{B} \mid \mathcal{F}_{n}\right]$ is $\sigma\left(X_{n}\right)$-measurable. Thus,

$$
\begin{equation*}
\mathbb{E}_{\mu}\left[\mathbb{1}_{B} \mid \mathcal{F}_{n}\right] \stackrel{\mathbb{P}_{\mu} \text {-a.s. }}{=} \mathbb{E}_{\mu}\left[\mathbb{1}_{B} \mid \sigma\left(X_{n}\right)\right] \tag{4}
\end{equation*}
$$

by Theorem 4.1.12 in [1]. Plugging (4) into (1) yields

$$
\begin{aligned}
\mathbb{P}_{\mu}\left\{A \cap B \mid X_{n}\right\} & =\mathbb{E}_{\mu}\left[\mathbb{1}_{A} \cdot \mathbb{E}_{\mu}\left[\mathbb{1}_{B} \mid \mathcal{F}_{n}\right] \mid \sigma\left(X_{n}\right)\right] \\
& =\mathbb{E}_{\mu}\left[\mathbb{1}_{A} \cdot \mathbb{E}_{\mu}\left[\mathbb{1}_{B} \mid \sigma\left(X_{n}\right)\right] \mid \sigma\left(X_{n}\right)\right] \\
& \stackrel{(\mathrm{e})}{=} \mathbb{E}_{\mu}\left[\mathbb{1}_{A} \mid \sigma\left(X_{n}\right)\right] \mathbb{E}_{\mu}\left[\mathbb{1}_{B} \mid \sigma\left(X_{n}\right)\right] \\
& =\mathbb{P}_{\mu}\left\{A \mid X_{n}\right\} \mathbb{P}_{\mu}\left\{B \mid X_{n}\right\}
\end{aligned}
$$

\mathbb{P}_{μ}-almost surely, where the step (e) is due to Theorem 4.1.14 in [1], and we are done.
Hereafter, we assume throughout the rest of homework problems that the underlying state space \mathbb{S} is countable and it is equipped with the discrete σ-field $2^{\mathbb{S}}$. Since $\left(\mathbb{S}, 2^{\mathbb{S}}\right)$ is a nice measurable space, it admits the canonical construction in Section 5.2 in [1] of the probability measure \mathbb{P}_{μ} on the sequence space $\left(\Omega_{0}, \mathcal{F}_{\infty}\right)$ so that the sequence of coordinate maps $\left\{X_{n}(\omega):=\omega_{n}\right\}_{n=0}^{\infty}$ is a homogeneous Markov chain with initial distribution μ and transition probability $p(\cdot, \cdot): \mathbb{S} \times 2^{\mathbb{S}} \rightarrow[0,1]$. We remark that it is conventional to write $p(x, y):=p(x,\{y\})$ for $x, y \in \mathbb{S}$.

Problem 2 (Exercise 5.2.4. in [1]: First entrance decomposition).
We begin the proof by defining the functions $Y_{m}: \Omega_{0} \rightarrow \mathbb{R}, m \in \mathbb{Z}_{+}$, by

$$
Y_{m}(\omega):=\mathbb{1}_{\left\{X_{n-m}=y\right\}}(\omega)=\mathbb{1}_{\left\{\omega_{n-m}=y\right\}}, \forall \omega \in \Omega_{0},
$$

if $0 \leq m \leq n$, and $Y_{m}(\omega):=0$ for all $\omega \in \Omega_{0}$ otherwise. It's clear that all Y_{m} are bounded and measurable functions on the sequence space $\left(\Omega_{0}, \mathcal{F}_{\infty}\right)$. Also, according to the definition of the hitting time T_{y}, we have

$$
\left\{T_{y}=n\right\}=\left\{X_{1} \in \mathbb{S} \backslash\{y\}, \cdots, X_{n-1} \in \mathbb{S} \backslash\{y\}, X_{n}=y\right\} \in \mathcal{F}_{n}
$$

for every $n \in \mathbb{Z}_{+}$, where $\left\{\mathcal{F}_{n}:=\sigma\left(\left\{X_{k}: k \in[0: n]\right\}\right)\right\}_{n=0}^{\infty}$ denotes the canonical filtration of $\left\{X_{n}\right\}_{n=0}^{\infty}$. Thus, T_{y} is a stopping time with respect to the canonical filtration $\left\{\mathcal{F}_{n}\right\}_{n=0}^{\infty}$. Moreover, one can see that if $T_{y}(\omega)<+\infty$, then

$$
\begin{equation*}
\left(Y_{T_{y}} \circ \theta_{T_{y}}\right)(\omega)=\mathbb{1}_{\left\{X_{n}=y\right\}}(\omega), \forall \omega \in \Omega_{0} \tag{5}
\end{equation*}
$$

Hence, we have

$$
\begin{aligned}
p^{n}(x, y) & =\mathbb{P}_{x}\left\{X_{n}=y\right\}=\mathbb{E}_{x}\left[\mathbb{1}_{\left\{X_{n}=y\right\}}\right] \\
& \stackrel{(\text { a) }}{=} \mathbb{E}_{x}\left[\mathbb{1}_{\left\{X_{n}=y\right\}} \cdot \mathbb{1}_{\left\{T_{y}<+\infty\right\}}\right] \\
& \stackrel{(\mathrm{b})}{=} \mathbb{E}_{x}\left[\left(Y_{T_{y}} \circ \theta_{T_{y}}\right) \cdot \mathbb{1}_{\left\{T_{y}<+\infty\right\}}\right] \\
& =\mathbb{E}_{x}\left[\mathbb{E}_{x}\left[\left(Y_{T_{y}} \circ \theta_{T_{y}}\right) \cdot \mathbb{1}_{\left\{T_{y}<+\infty\right\}} \mid \mathcal{F}_{T_{y}}\right]\right] \\
& \stackrel{(\mathrm{c})}{=} \mathbb{E}_{x}\left[\mathbb{E}_{x}\left[\left(Y_{T_{y}} \circ \theta_{T_{y}}\right) \cdot \mid \mathcal{F}_{T_{y}}\right] \mathbb{1}_{\left\{T_{y}<+\infty\right\}}\right] \\
& \stackrel{(\mathrm{d})}{=} \mathbb{E}_{x}\left[\mathbb{E}_{X_{T_{y}}}\left[Y_{T_{y}}\right] \cdot \mathbb{1}_{\left\{T_{y}<+\infty\right\}}\right] \\
& \stackrel{(\mathrm{e})}{=} \mathbb{E}_{x}\left[\mathbb{E}_{y}\left[Y_{T_{y}}\right] \cdot \mathbb{1}_{\left\{T_{y}<+\infty\right\}}\right] \\
& =\mathbb{E}_{x}\left[\sum_{m=0}^{\infty} \mathbb{E}_{y}\left[Y_{T_{y}}\right] \cdot \mathbb{1}_{\left\{T_{y}=m\right\}}\right] \\
& \stackrel{(\mathrm{f})}{=} \sum_{m=0}^{\infty} \mathbb{E}_{x}\left[\mathbb{E}_{y}\left[Y_{T_{y}}\right] \cdot \mathbb{1}_{\left\{T_{y}=m\right\}}\right] \\
& =\sum_{m=0}^{\infty} \mathbb{E}_{y}\left[Y_{m}\right] \cdot \mathbb{E}_{x}\left[\mathbb{1}_{\left\{T_{y}=m\right\}}\right] \\
& =\sum_{m=0}^{\infty} \mathbb{P}_{x}\left\{T_{y}=m\right\} \underbrace{}_{=p^{n-m}(y, y)}
\end{aligned}
$$

Here, the above steps (a)-(f) can be justified as follows:
(a) $\left\{X_{n}=y\right\} \subseteq\left\{T_{y}<+\infty\right\}$;
(b) the equality (5);
(c) $\left\{T_{y}<+\infty\right\} \in \mathcal{F}_{T_{y}}$. To see this, we notice that

$$
\left\{T_{y}<+\infty\right\} \cap\left\{T_{y}=n\right\}=\left\{T_{y}=n\right\} \in \mathcal{F}_{n}, \forall n \in \mathbb{Z}_{+},
$$

since T_{y} is a stopping time with respect to the filtration $\left\{\mathcal{F}_{n}\right\}_{n=0}^{\infty}$;
(d) the strong Markov property (Theorem 5.2.5 in [1]);
(e) On the event $\left\{T_{y}<+\infty\right\}$, we have $X_{T_{y}}=y$;
(f) the Fubini-Tonelli's theorem, since the summands are non-negative.

This establishes the desired result.
Problem 3 (Exercise 5.2.6. in [1]).
Since $\mathbb{S} \backslash C$ is finite, $\inf \left\{\mathbb{P}_{x}\left\{T_{C}<+\infty\right\}: x \in \mathbb{S} \backslash C\right\}>0$. Take $\epsilon:=\frac{1}{2} \inf \left\{\mathbb{P}_{x}\left\{T_{C}<+\infty\right\}: x \in \mathbb{S} \backslash C\right\} \in$ $(0,1)$. As $\mathbb{P}_{x}\left\{T_{C}<+\infty\right\}=\lim _{n \rightarrow \infty} \uparrow \mathbb{P}_{x}\left\{T_{C} \leq n\right\}>\epsilon$ for every $x \in \mathbb{S} \backslash C$, there exists a positive integer $N(x) \in \mathbb{N}$ such that $\mathbb{P}_{x}\left\{T_{C} \leq n\right\} \geq \epsilon$ for every $n \geq N(x)$. Let $N:=\max \{N(x): x \in \mathbb{S} \backslash C\} \in \mathbb{N}$. Then, we have

$$
\begin{equation*}
\mathbb{P}_{x}\left\{T_{C}>N\right\}=1-\mathbb{P}_{x}\left\{T_{C} \leq N\right\} \leq 1-\epsilon \tag{6}
\end{equation*}
$$

for every $x \in \mathbb{S} \backslash C$, since $N \geq N(x)$ for all $x \in \mathbb{S} \backslash C$.
Now, define $Y: \Omega_{0} \rightarrow \mathbb{R}$ by

$$
Y(\omega):=\mathbb{1}_{\left\{T_{C}>N\right\}}(\omega)=\mathbb{1}_{\bigcap_{i=1}^{N}\left\{X_{i} \in \mathbb{S} \backslash C\right\}}(\omega), \quad \forall \omega \in \Omega_{0} .
$$

Then, Y is clearly a bounded, measurable function from the sequence space $\left(\Omega_{0}, \mathcal{F}_{\infty}\right)$ to $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$. Moreover, we can see that for every $k \geq 2$,

$$
\left(Y \circ \theta_{(k-1) N}\right)(\omega)=\mathbb{1}_{\bigcap_{i=(k-1) N+1}^{k N}\left\{X_{i} \in \mathbb{S} \backslash C\right\}}(\omega), \forall \omega \in \Omega_{0},
$$

thereby we get

$$
\begin{align*}
\left(Y \circ \theta_{(k-1) N}\right)(\omega) \cdot \mathbb{1}_{\left\{T_{C}>(k-1) N\right\}}(\omega) & =\mathbb{1}_{\left\{T_{C}>(k-1) N, X_{(k-1) N+1} \in \mathbb{S} \backslash C, X_{(k-1) N+2} \in \mathbb{S} \backslash C, \cdots, X_{k N} \in \mathbb{S} \backslash C\right\}}(\omega) \\
& =\mathbb{1}_{\bigcap_{i=1}^{k N}\left\{X_{i} \in \mathbb{S} \backslash C\right\}}(\omega) \tag{7}\\
& =\mathbb{1}_{\left\{T_{C}>k N\right\}}(\omega)
\end{align*}
$$

for all $\omega \in \Omega_{0}$. Therefore, we obtain for every $y \in \mathbb{S} \backslash C$ and $k \geq 2$ that

$$
\begin{aligned}
& \mathbb{P}_{y}\left\{T_{C}>k N\right\}=\mathbb{E}_{y}\left[\mathbb{1}_{\left\{T_{C}>k N\right\}}\right] \\
& \stackrel{(\mathrm{a})}{=} \mathbb{E}_{y}\left[\left(Y \circ \theta_{(k-1) N}\right) \cdot \mathbb{1}_{\left\{T_{C}>(k-1) N\right\}}\right] \\
& =\mathbb{E}_{y}\left[\mathbb{E}_{y}\left[\left(Y \circ \theta_{(k-1) N}\right) \cdot \mathbb{1}_{\left\{T_{C}>(k-1) N\right\}} \mid \mathcal{F}_{(k-1) N}\right]\right] \\
& \stackrel{(\mathrm{b})}{=} \mathbb{E}_{y}\left[\mathbb{E}_{y}\left[Y \circ \theta_{(k-1) N} \mid \mathcal{F}_{(k-1) N}\right] \mathbb{1}_{\left\{T_{C}>(k-1) N\right\}}\right] \\
& \stackrel{(\mathrm{c})}{=} \mathbb{E}_{y}\left[\mathbb{E}_{X_{(k-1) N}}[Y] \cdot \mathbb{1}_{\left\{T_{C}>(k-1) N\right\}}\right] \\
& \stackrel{(\mathrm{d})}{=} \mathbb{E}_{y}\left[\mathbb{E}_{X_{(k-1) N}}[Y] \cdot \mathbb{1}_{\left\{T_{C}>(k-1) N, X_{(k-1) N} \in \mathbb{S} \backslash C\right\}}\right] \\
& =\mathbb{E}_{y}\left[\mathbb{E}_{X_{(k-1) N}}[Y]\left(\sum_{x \in \mathbb{S} \backslash C} \mathbb{1}_{\left\{T_{C}>(k-1) N, X_{(k-1) N}=x\right\}}\right)\right] \\
& \stackrel{(\mathrm{e})}{=} \sum_{x \in \mathbb{S} \backslash C} \mathbb{E}_{y}\left[\mathbb{E}_{X_{(k-1) N}}[Y] \cdot \mathbb{1}_{\left\{T_{C}>(k-1) N, X_{(k-1) N}=x\right\}}\right] \\
& =\sum_{x \in \mathbb{S} \backslash C} \mathbb{E}_{y}\left[\mathbb{E}_{x}[Y] \cdot \mathbb{1}_{\left\{T_{C}>(k-1) N, X_{(k-1) N}=x\right\}}\right] \\
& =\sum_{x \in \mathbb{S} \backslash C} \mathbb{E}_{y}\left[\mathbb{1}_{\left\{T_{C}>(k-1) N, X_{(k-1) N}=x\right\}}\right] \cdot \mathbb{P}_{x}\left\{T_{C}>N\right\} \\
& \stackrel{(\mathrm{f})}{\leq}(1-\epsilon) \sum_{x \in \mathbb{S} \backslash C} \mathbb{E}_{y}\left[\mathbb{1}_{\left\{T_{C}>(k-1) N, X_{(k-1) N}=x\right\}}\right] \\
& \stackrel{(\mathrm{g})}{=}(1-\epsilon) \mathbb{E}_{y}\left[\sum_{x \in \mathbb{S} \backslash C} \mathbb{1}_{\left\{T_{C}>(k-1) N, X_{(k-1) N}=x\right\}}\right] \\
& \left.=(1-\epsilon) \mathbb{E}_{y}\left[\mathbb{1}_{\left\{T_{C}>(k-1) N,\right.} X_{(k-1) N} \in \mathbb{S} \backslash C\right\}\right] \\
& \stackrel{(\mathrm{h})}{=}(1-\epsilon) \mathbb{E}_{y}\left[\mathbb{1}_{\left\{T_{C}>(k-1) N\right\}}\right] \\
& =(1-\epsilon) \mathbb{P}_{y}\left\{T_{C}>(k-1) N\right\} \text {, }
\end{aligned}
$$

Here, the above steps (a)-(h) can be justified as follows:
(a) the equality (7);
(b) $\left\{T_{C}>(k-1) N\right\}=\bigcap_{i=1}^{(k-1) N}\left\{X_{i} \in \mathbb{S} \backslash C\right\} \in \mathcal{F}_{(k-1) N}$;
(c) the Markov property (Theorem 5.2.3 in [1]);
(d) $\left\{T_{C}>(k-1) N\right\} \subseteq\left\{X_{(k-1) N} \in \mathbb{S} \backslash C\right\}$;
(e) we can change the order between expectation and summation since $\mathbb{S} \backslash C$ is finite;
(f) the bound (6);
(g) we can change the order between expectation and summation since $\mathbb{S} \backslash C$ is finite;
(h) $\left\{T_{C}>(k-1) N\right\} \subseteq\left\{X_{(k-1) N} \in \mathbb{S} \backslash C\right\}$.

We remark that $\left\{\mathcal{F}_{n}\right\}_{n=0}^{\infty}$ denotes the canonical filtration of the given Markov chain $\left\{X_{n}\right\}_{n=0}^{\infty}$, i.e., $\mathcal{F}_{n}:=$ $\sigma\left(X_{0}, X_{1}, \cdots, X_{n}\right)$ for every $n \in \mathbb{Z}_{+}$. Hence, we can deduce inductively that

$$
\mathbb{P}_{y}\left\{T_{C}>k N\right\} \leq(1-\epsilon)^{k-1} \cdot \mathbb{P}_{y}\left\{T_{C}>N\right\} \stackrel{(\mathrm{i})}{\leq}(1-\epsilon)^{k}
$$

for every $k \in \mathbb{N}$ and $y \in \mathbb{S} \backslash C$, where the step (i) is simply the bound (6). This completes the proof of the desired result.

Problem 4 (Exercise 5.2.7. in [1]: Exit distributions).
(i) To begin with, we can see for every $C \subseteq \mathbb{S}$ that the first visiting time to C, V_{C}, is a stopping time with respect to the canonical filtration $\left\{\mathcal{F}_{n}:=\sigma\left(X_{0}, X_{1}, \cdots, X_{n}\right)\right\}_{n=0}^{\infty}$. To see this, we notice that

$$
\left\{V_{C}=n\right\}=\left\{X_{0} \in \mathbb{S} \backslash C, \cdots, X_{n-1} \in \mathbb{S} \backslash C, X_{n} \in C\right\} \in \mathcal{F}_{n}, \forall n \in \mathbb{Z}_{+}
$$

Now, we define a function $Y: \Omega_{0} \rightarrow \mathbb{R}$ by

$$
Y(\omega):=\mathbb{1}_{\left\{V_{A}<V_{B}\right\}}(\omega)= \begin{cases}1 & \text { if } \inf \left\{n \geq 0: X_{n} \in A\right\}<\inf \left\{n \geq 0: X_{n} \in B\right\} \\ 0 & \text { otherwise }\end{cases}
$$

Since both V_{A} and V_{B} are stopping times with respect to $\left\{\mathcal{F}_{n}\right\}_{n=0}^{\infty}$ defined on the sequence space $\left(\Omega_{0}, \mathcal{F}_{\infty}\right)$, $\left\{V_{A}<V_{B}\right\} \in \mathcal{F}_{\infty}$. Thus, $Y:\left(\Omega_{0}, \mathcal{F}_{\infty}\right) \rightarrow(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ is a bounded, measurable function, where $\mathcal{B}(\mathbb{R})$ denotes the Borel σ-field on \mathbb{R}. Moreover, we may observe that if $X_{0} \in \mathbb{S} \backslash(A \cup B)$, then

$$
\begin{align*}
\left(Y \circ \theta_{1}\right)(\omega) & = \begin{cases}1 & \text { if } \inf \left\{n \geq 1: X_{n} \in A\right\}<\inf \left\{n \geq 1: X_{n} \in B\right\} \\
0 & \text { otherwise } .\end{cases} \\
& = \begin{cases}1 & \text { if } \inf \left\{n \geq 0: X_{n} \in A\right\}<\inf \left\{n \geq 0: X_{n} \in B\right\} \\
0 & \text { otherwise }\end{cases} \tag{8}\\
& =Y(\omega)
\end{align*}
$$

for all $\omega \in \Omega_{0}$. Hence, the following holds: for every $x \in \mathbb{S} \backslash(A \cup B)$,

$$
\begin{aligned}
h(x) & =\mathbb{P}_{x}\left\{V_{A}<V_{B}\right\}=\mathbb{E}_{x}[Y] \\
& \stackrel{(\mathrm{a})}{=} \mathbb{E}_{x}\left[Y \circ \theta_{1}\right] \\
& =\mathbb{E}_{x}\left[\mathbb{E}_{x}\left[Y \circ \theta_{1} \mid \mathcal{F}_{1}\right]\right] \\
& \stackrel{(b)}{=} \mathbb{E}_{x}\left[\mathbb{E}_{X_{1}}[Y]\right] \\
& =\mathbb{E}_{x}\left[\sum_{y \in \mathbb{S}} \mathbb{E}_{X_{1}}[Y] \cdot \mathbb{1}_{\left\{X_{1}=y\right\}}\right] \\
& \stackrel{(\mathrm{c})}{=} \sum_{y \in \mathbb{S}} \mathbb{E}_{x}\left[\mathbb{E}_{X_{1}}[Y] \cdot \mathbb{1}_{\left\{X_{1}=y\right\}}\right] \\
& =\sum_{y \in \mathbb{S}} \mathbb{E}_{x}\left[\mathbb{E}_{y}[Y] \cdot \mathbb{1}_{\left\{X_{1}=y\right\}}\right] \\
& =\sum_{y \in \mathbb{S}} \underbrace{\mathbb{P}_{x}\left\{X_{1}=y\right\}}_{=p(x, y)} \cdot \underbrace{\mathbb{P}_{y}\left\{V_{A}<V_{B}\right\}}_{=h(y)} \\
& =\sum_{y \in \mathbb{S}} p(x, y) h(y),
\end{aligned}
$$

Here, the above steps (a)-(c) can be verified as follows:
(a) it follows from (8) together with the assumption $x \in \mathbb{S} \backslash(A \cup B)$;
(b) the Markov property (Theorem 5.2.3 in [1]);
(c) the Fubini-Tonelli's theorem, since the summands are non-negative.
(ii) Let μ denote the initial distribution of the Markov chain $\left\{X_{n}\right\}_{n=0}^{\infty}, h: \mathbb{S} \rightarrow \mathbb{R}$ be any bounded function satisfying the given condition $(*)$, and $M_{n}:=h\left(X_{n \wedge V_{A \cup B}}\right)$ for $n \in \mathbb{Z}_{+}$. Then, one can see that for $n \in \mathbb{N}$,

$$
\begin{align*}
M_{n} & =h\left(X_{n}\right) \mathbb{1}_{\left\{V_{A \cup B} \geq n\right\}}+h\left(X_{V_{A \cup B}}\right) \mathbb{1}_{\left\{V_{A \cup B}<n\right\}} \\
& =h\left(X_{n}\right) \mathbb{1}_{\left\{V_{A \cup B} \geq n\right\}}+\sum_{k=0}^{n-1} h\left(X_{V_{A \cup B}}\right) \mathbb{1}_{\left\{V_{A \cup B}=k\right\}} . \tag{9}
\end{align*}
$$

It's clear that $M_{n} \in L^{1}\left(\Omega_{0}, \mathcal{F}_{\infty}, \mathbb{P}_{\mu}\right)$, i.e., M_{n} is \mathbb{P}_{μ}-integrable as h is bounded. From (9), we reach

$$
\begin{align*}
\mathbb{E}_{\mu}\left[M_{n} \mid \mathcal{F}_{n-1}\right] & =\mathbb{E}_{\mu}\left[h\left(X_{n}\right) \mathbb{1}_{\left\{V_{A \cup B} \geq n\right\}} \mid \mathcal{F}_{n-1}\right]+\sum_{k=0}^{n-1} \mathbb{E}_{\mu}\left[h\left(X_{V_{A \cup B}}\right) \mathbb{1}_{\left\{V_{A \cup B}=k\right\}} \mid \mathcal{F}_{n-1}\right] \\
& =\mathbb{E}_{\mu}\left[h\left(X_{n}\right) \mathbb{1}_{\left\{V_{A \cup B} \geq n\right\}} \mid \mathcal{F}_{n-1}\right]+\sum_{k=0}^{n-1} \mathbb{E}_{\mu}\left[h\left(X_{k}\right) \mathbb{1}_{\left\{V_{A \cup B}=k\right\}} \mid \mathcal{F}_{n-1}\right] \tag{10}\\
& \stackrel{(\mathrm{d})}{=} \mathbb{E}_{\mu}\left[h\left(X_{n}\right) \mathbb{1}_{\left\{V_{A \cup B} \geq n\right\}} \mid \mathcal{F}_{n-1}\right]+\sum_{k=0}^{n-1} h\left(X_{k}\right) \mathbb{1}_{\left\{V_{A \cup B}=k\right\}},
\end{align*}
$$

\mathbb{P}_{μ}-almost surely, where the step (a) follows from the fact $h\left(X_{k}\right) \mathbb{1}_{\left\{V_{A \cup B}=k\right\}} \in \mathcal{F}_{k} \subseteq \mathcal{F}_{n-1}$ for every $k \in[0$: $n-1$], which holds since $V_{A \cup B}$ is a stopping time with respect to the canonical filtration $\left\{\mathcal{F}_{n}\right\}_{n=0}^{\infty}$. At this point, we claim the following statement.

Claim 2. $\mathbb{E}_{\mu}\left[h\left(X_{n}\right) \mathbb{1}_{\left\{V_{A \cup B} \geq n\right\}} \mid \mathcal{F}_{n-1}\right] \stackrel{\mathbb{P}_{\mu} \text {-a.s. }}{=} h\left(X_{n-1}\right) \mathbb{1}_{\left\{V_{A \cup B} \geq n\right\}}$.
Proof of Claim 2.
To begin with, we note from $\left\{V_{A \cup B} \geq k\right\}=\left\{X_{0} \in \mathbb{S} \backslash(A \cup B), X_{1} \in \mathbb{S} \backslash(A \cup B), \cdots, X_{k-1} \in \mathbb{S} \backslash(A \cup B)\right\}$ that

$$
\begin{equation*}
\mathbb{1}_{\left\{V_{A \cup B} \geq k\right\}}(\omega)=\prod_{j=0}^{k-1} \mathbb{1}_{\mathbb{S} \backslash(A \cup B)}\left(\omega_{j}\right) \tag{11}
\end{equation*}
$$

for all $\omega \in \Omega_{0}$ and $k \in \mathbb{N}$. Let $\mathcal{P}_{k}:=\left\{\left\{\omega \in \Omega_{0}: \omega_{0} \in A_{0}, \omega_{1} \in A_{1}, \cdots, \omega_{k} \in A_{k}\right\}: A_{0}, A_{1}, \cdots, A_{k} \in \mathcal{S}=2^{\mathbb{S}}\right\}$ for $k \in \mathbb{Z}_{+}$. Then, \mathcal{P}_{k} is a π-system on Ω_{0} with $\mathcal{F}_{k}=\sigma\left(X_{0}, X_{1}, \cdots, X_{k}\right)=\sigma\left(\mathcal{P}_{k}\right)$. Firstly, we claim that

$$
\begin{equation*}
\mathbb{E}_{\mu}\left[h\left(X_{n}\right) \mathbb{1}_{\left\{V_{A \cup B} \geq n\right\}} \cdot \mathbb{1}_{E}\right]=\mathbb{E}_{\mu}\left[h\left(X_{n-1}\right) \mathbb{1}_{\left\{V_{A \cup B} \geq n\right\}} \cdot \mathbb{1}_{E}\right] \tag{12}
\end{equation*}
$$

for all $E \in \mathcal{P}_{n-1}$. Given any $E \in \mathcal{P}_{n-1}$, it can be written by

$$
E=\left\{X_{0} \in A_{0}, X_{1} \in A_{1}, \cdots, X_{n-1} \in A_{n-1}\right\}
$$

for some $A_{0}, A_{1}, \cdots, A_{n-1} \in \mathcal{S}=2^{\mathbb{S}}$. Therefore,

$$
\begin{align*}
& \mathbb{E}_{\mu}\left[h\left(X_{n}\right) \mathbb{1}_{\left\{V_{A \cup B} \geq n\right\}} \cdot \mathbb{1}_{E}\right] \stackrel{(e)}{=} \mathbb{E}_{\mu}\left[\prod_{k=0}^{n-1}\left(\mathbb{1}_{\{\mathbb{S} \backslash(A \cup B)\} \cap A_{k}}\left(X_{k}\right)\right) h\left(X_{n}\right)\right] \\
& \stackrel{(\mathrm{f})}{=} \int_{\mathbb{S}} \mu\left(\mathrm{d} x_{0}\right) \mathbb{1}_{\{\mathbb{S} \backslash(A \cup B)\} \cap A_{0}}\left(x_{0}\right)\left[\int_{\mathbb{S}} p\left(x_{0}, \mathrm{~d} x_{1}\right) \mathbb{1}_{\{\mathbb{S} \backslash(A \cup B)\} \cap A_{1}}\left(x_{1}\right)\right. \\
& \left.\left[\cdots\left[\int_{\mathbb{S}} p\left(x_{n-1}, \mathrm{~d} x_{n}\right) h\left(x_{n}\right)\right] \cdots\right]\right] \\
& =\sum_{x_{0} \in\{\mathbb{S} \backslash(A \cup B)\} \cap A_{0}} \mu\left(x_{0}\right)\left[\sum_{x_{1} \in\{\mathbb{S} \backslash(A \cup B)\} \cap A_{1}} p\left(x_{0}, x_{1}\right)\right. \\
& [\cdots[\sum_{x_{n-1} \in\{\mathbb{S} \backslash(A \cup B)\} \cap A_{n-1}} p\left(x_{n-2}, x_{n-1}\right) \underbrace{\left[\sum_{x_{n} \in \mathbb{S}} p\left(x_{n-1}, x_{n}\right) h\left(x_{n}\right)\right]}_{=h\left(x_{n-1}\right)}] \cdots]] \tag{13}\\
& \stackrel{(\mathrm{g})}{=} \sum_{x_{0} \in\{\mathbb{S} \backslash(A \cup B)\} \cap A_{0}} \mu\left(x_{0}\right)\left[\sum_{x_{1} \in\{\mathbb{S} \backslash(A \cup B)\} \cap A_{1}} p\left(x_{0}, x_{1}\right)\right. \\
& \left.\left[\cdots\left[\sum_{x_{n-1} \in\{\mathbb{S} \backslash(A \cup B)\} \cap A_{n-1}} p\left(x_{n-2}, x_{n-1}\right) h\left(x_{n-1}\right)\right] \cdots\right]\right] \\
& =\int_{\mathbb{S}} \mu\left(\mathrm{d} x_{0}\right) \mathbb{1}_{\{\mathbb{S} \backslash(A \cup B)\} \cap A_{0}}\left(x_{0}\right)\left[\int_{\mathbb{S}} p\left(x_{0}, \mathrm{~d} x_{1}\right) \mathbb{1}_{\{\mathbb{S} \backslash(A \cup B)\} \cap A_{1}}\left(x_{1}\right)\right. \\
& \left.\left[\cdots\left[\int_{\mathbb{S}} p\left(x_{n-2}, \mathrm{~d} x_{n-1}\right) h\left(x_{n-1}\right) \mathbb{1}_{\{\mathbb{S} \backslash(A \cup B)\} \cap A_{n-1}}\left(x_{n-1}\right)\right] \cdots\right]\right] \\
& \stackrel{(\mathrm{h})}{=} \mathbb{E}_{\mu}\left[\prod_{k=0}^{n-2}\left(\mathbb{1}_{\{S \backslash(A \cup B)\} \cap A_{k}}\left(X_{k}\right)\right)\left(\mathbb{1}_{\{S \backslash(A \cup B)\} \cap A_{n-1}}\left(X_{n-1}\right) h\left(X_{n-1}\right)\right)\right] \\
& \stackrel{(\mathrm{i})}{=} \mathbb{E}_{\mu}\left[h\left(X_{n-1}\right) \mathbb{1}_{\left\{V_{A \cup B} \geq n\right\}} \cdot \mathbb{1}_{E}\right] .
\end{align*}
$$

Each of the steps (e)-(i) can be justified as follows:
(e) the equality (11);
(f) the equation (5.2.3) in [1];
(g) from the assumption, we have for every $x_{n-1} \in\{\mathbb{S} \backslash(A \cup B)\} \cap A_{n-1}$,

$$
p\left(x_{n-1}\right)=\sum_{x_{n} \in \mathbb{S}} p\left(x_{n-1}, x_{n}\right) h\left(x_{n}\right) .
$$

(h) the equation (5.2.3) in [1];
(i) the equality (11).

Finally, we set $\mathcal{L}_{k}:=\left\{E \in \mathcal{F}_{k}: \mathbb{E}_{\mu}\left[h\left(X_{k+1}\right) \mathbb{1}_{\left\{V_{A \cup B} \geq k+1\right\}} \cdot \mathbb{1}_{E}\right]=\mathbb{E}_{\mu}\left[h\left(X_{k}\right) \mathbb{1}_{\left\{V_{A \cup B} \geq k+1\right\}} \cdot \mathbb{1}_{E}\right]\right\}$ for each $k \in \mathbb{Z}_{+}$. Then, the equation (13) yields $\mathcal{P}_{n-1} \subseteq \mathcal{L}_{n-1}$. Now, we claim that \mathcal{L}_{n-1} is a π-system on Ω_{0}.

1. Since $\mathcal{P}_{n-1} \subseteq \mathcal{L}_{n-1}$, both \varnothing and Ω_{0} belong to \mathcal{L}_{n-1};
2. If $E, F \in \mathcal{L}_{n-1}$ with $E \subseteq F$, then we obtain from the linearlity of expectations that

$$
\begin{aligned}
\mathbb{E}_{\mu}\left[h\left(X_{n}\right) \mathbb{1}_{\left\{V_{A \cup B} \geq n\right\}} \cdot \mathbb{1}_{F \backslash E}\right] & =\mathbb{E}_{\mu}\left[h\left(X_{n}\right) \mathbb{1}_{\left\{V_{A \cup B} \geq n\right\}} \cdot \mathbb{1}_{F}\right]-\mathbb{E}_{\mu}\left[h\left(X_{n}\right) \mathbb{1}_{\left\{V_{A \cup B} \geq n\right\}} \cdot \mathbb{1}_{E}\right] \\
& =\mathbb{E}_{\mu}\left[h\left(X_{n-1}\right) \mathbb{1}_{\left\{V_{A \cup B} \geq n\right\}} \cdot \mathbb{1}_{F}\right]-\mathbb{E}_{\mu}\left[h\left(X_{n-1}\right) \mathbb{1}_{\left\{V_{A \cup B} \geq n\right\}} \cdot \mathbb{1}_{E}\right] \\
& =\mathbb{E}_{\mu}\left[h\left(X_{n-1}\right) \mathbb{1}_{\left\{V_{A \cup B} \geq n\right\}} \cdot \mathbb{1}_{F \backslash E}\right],
\end{aligned}
$$

thereby $F \backslash E \in \mathcal{L}_{n-1}$.
3. Let $\left\{E_{k}\right\}_{k=1}^{\infty}$ be a sequence in \mathcal{L}_{n-1} with $E_{k} \uparrow E$ as $k \rightarrow \infty$. Then, $\mathbb{1}_{E_{k}} \xrightarrow{k \rightarrow \infty} \mathbb{1}_{E}$, and so the bounded convergence theorem yields

$$
\begin{aligned}
\mathbb{E}_{\mu}\left[h\left(X_{n}\right) \mathbb{1}_{\left\{V_{A \cup B} \geq n\right\}} \cdot \mathbb{1}_{E}\right] & =\lim _{k \rightarrow \infty} \mathbb{E}_{\mu}\left[h\left(X_{n}\right) \mathbb{1}_{\left\{V_{A \cup B} \geq n\right\}} \cdot \mathbb{1}_{E_{k}}\right] \\
& =\lim _{k \rightarrow \infty} \mathbb{E}_{\mu}\left[h\left(X_{n-1}\right) \mathbb{1}_{\left\{V_{A \cup B} \geq n\right\}} \cdot \mathbb{1}_{E_{k}}\right] \\
& =\mathbb{E}_{\mu}\left[h\left(X_{n-1}\right) \mathbb{1}_{\left\{V_{A \cup B} \geq n\right\}} \cdot \mathbb{1}_{E}\right],
\end{aligned}
$$

thereby $E \in \mathcal{L}_{n-1}$.
Hence, \mathcal{L}_{n-1} is a λ-system on Ω_{0} with $\mathcal{P}_{n-1} \subseteq \mathcal{L}_{n-1}$ and so we get $\mathcal{L}_{n-1}=\sigma\left(\mathcal{P}_{n-1}\right)=\mathcal{F}_{n-1}$ by the $\pi-\lambda$ theorem (Theorem 2.1.6 in [1]). Since $h\left(X_{n-1}\right) \mathbb{1}_{\left\{V_{A \cup B} \geq n\right\}}=h\left(X_{n-1)}\left(1-\mathbb{1}_{\left\{V_{A \cup B} \leq n-1\right\}}\right)\right.$ is \mathcal{F}_{n-1}-measurable, it establishes the desired claim.

Putting Claim 2 into the equation (10) yields

$$
\begin{aligned}
\mathbb{E}_{\mu}\left[M_{n} \mid \mathcal{F}_{n-1}\right] & =\mathbb{E}_{\mu}\left[h\left(X_{n}\right) \mathbb{1}_{\left\{V_{A \cup B} \geq n\right\}} \mid \mathcal{F}_{n-1}\right]+\sum_{k=0}^{n-1} h\left(X_{k}\right) \mathbb{1}_{\left\{V_{A \cup B}=k\right\}} \\
& =h\left(X_{n-1}\right) \mathbb{1}_{\left\{V_{A \cup B} \geq n\right\}}+\sum_{k=0}^{n-1} h\left(X_{k}\right) \mathbb{1}_{\left\{V_{A \cup B}=k\right\}} \\
& =h\left(X_{n-1}\right) \mathbb{1}_{\left\{V_{A \cup B} \geq n-1\right\}}+\sum_{k=0}^{n-2} h\left(X_{k}\right) \mathbb{1}_{\left\{V_{A \cup B}=k\right\}} \\
& =h\left(X_{(n-1) \wedge V_{A \cup B}}\right)=M_{n-1}
\end{aligned}
$$

\mathbb{P}_{μ}-almost surely. Hence, the stochastic process $\left\{M_{n}=h\left(X_{n \wedge V_{A \cup B}}\right)\right\}_{n=0}^{\infty}$ is a martingale with respect to the canonical filtration $\left\{\mathcal{F}_{n}\right\}_{n=0}^{\infty}$ for any bounded function $h: \mathbb{S} \rightarrow \mathbb{R}$ satisfying the condition (*).
(iii) Let $g: \mathbb{S} \rightarrow \mathbb{R}$ be any other function satisfying the condition $(*)$, and $g(x)=1$ if $x \in A ; g(x)=0$ if $x \in B$. Since

$$
\sup \{|g(x)|: x \in \mathbb{S}\} \leq \max \{1, \sup \{|g(x)|: x \in \mathbb{S} \backslash(A \cup B)\}\} \stackrel{(\mathrm{j})}{<}+\infty
$$

where the step (j) holds since $\mathbb{S} \backslash(A \cup B)$ is finite, g is a bounded function and so is h by the same argument. If we let $f:=g-h$, then $f: \mathbb{S} \rightarrow \mathbb{R}$ is a bounded function satisfying the condition $(*)$ together with $f(x)=0$ for $x \in A \cup B$. As we have shown that the second statement (ii) of this problem is valid for any bounded function from \mathbb{S} to \mathbb{R} which satisfies the condition $(*),\left\{f\left(X_{n \wedge V_{A \cup B}}\right)\right\}_{n=0}^{\infty}$ is a martingale with respect to the canonical filtration $\left\{\mathcal{F}_{n}\right\}_{n=0}^{\infty}$. Thus for any $x \in \mathbb{S} \backslash(A \cup B)$, we have

$$
\begin{align*}
f(x) & =\mathbb{E}_{x}\left[f\left(X_{0 \wedge V_{A \cup B}}\right)\right] \\
& =\mathbb{E}_{x}\left[f\left(X_{n \wedge V_{A \cup B}}\right)\right] \\
& =\mathbb{E}_{x}\left[f\left(X_{n}\right) \mathbb{1}_{\left\{V_{A \cup B}>n\right\}}\right]+\mathbb{E}_{x}\left[f\left(X_{V_{A \cup B}}\right) \mathbb{1}_{\left\{V_{A \cup B} \leq n\right\}}\right] \tag{14}\\
& \stackrel{(\mathbf{k})}{=} \mathbb{E}_{x}\left[f\left(X_{n}\right) \mathbb{1}_{\left\{V_{A \cup B}>n\right\}}\right],
\end{align*}
$$

where the step (h) follows from the fact that if $V_{A \cup B}<+\infty$, then $X_{V_{A \cup B}} \in A \cup B$ and so $f\left(X_{V_{A \cup B}}\right)=0$. Since f is bounded, $L:=\sup \{|f(x)|: x \in \mathbb{S}\}<+\infty$. Then, one has from (14) that

$$
\begin{align*}
|f(x)| & =\left|\mathbb{E}_{x}\left[f\left(X_{n}\right) \mathbb{1}_{\left\{V_{A \cup B}>n\right\}}\right]\right| \\
& \leq \mathbb{E}_{x}\left[\left|f\left(X_{n}\right)\right| \mathbb{1}_{\left\{V_{A \cup B}>n\right\}}\right] \\
& \leq L \cdot \mathbb{P}_{x}\left\{V_{A \cup B}>n\right\} \tag{15}\\
& \stackrel{(1)}{=} L \cdot \mathbb{P}_{x}\left\{T_{A \cup B}>n\right\}
\end{align*}
$$

for every $n \in \mathbb{Z}_{+}$, where the step (l) comes from $x \in \mathbb{S} \backslash(A \cup B)$. As $\mathbb{S} \backslash(A \cup B)$ is finite and $\mathbb{P}_{y}\left\{T_{A \cup B}<+\infty\right\}>$ 0 for all $y \in \mathbb{S} \backslash(A \cup B)$, we can apply Problem 3 (Exercise 5.2.6 in [1]) at this point: there exists an $N \in \mathbb{N}$ and $\epsilon>0$ such that $\mathbb{P}_{y}\left\{T_{A \cup B}>k N\right\} \leq(1-\epsilon)^{k}$ for all $k \in \mathbb{N}$ and $y \in \mathbb{S} \backslash(A \cup B)$. Putting $n=k N$ into the bound (15) yields for every $x \in \mathbb{S} \backslash(A \cup B)$ that

$$
\begin{equation*}
|f(x)| \leq L(1-\epsilon)^{k} \tag{16}
\end{equation*}
$$

for all $k \in \mathbb{N}$. Letting $k \rightarrow \infty$ in (16), we can conclude that $f(x)=0$ for all $x \in \mathbb{S} \backslash(A \cup B)$. Consequently, we have $f(x)=g(x)-h(x)=0$ for all $x \in \mathbb{S}$, thereby $g \equiv h$ on \mathbb{S}. This completes the proof of the third statement.

Problem 5 (Exercise 5.2.8. in [1]).
Let $\mathbb{S}:=[0: N]=\{0,1, \cdots, N-1\}$. Then, one can see that

- $\{0\} \cap\{N\}=\varnothing$;
- $\mathbb{S} \backslash\{0, N\}=\{1,2, \cdots, N-1\}$ is finite;
- Since $V_{0} \wedge V_{N}=V_{\{0\} \cup\{N\}}, \mathbb{P}_{x}\left\{V_{\{0\} \cup\{N\}}<+\infty\right\}=\mathbb{P}_{x}\left\{V_{0} \wedge V_{N}<+\infty\right\}>0$ for all $x \in \mathbb{S} \backslash\{0, N\}$.

According to the above observations and the third problem (3) of Problem 4 (Exercise 5.2.7 in [1]), we know that the function $h: \mathbb{S} \rightarrow \mathbb{R}$ defined by $h(x):=\mathbb{P}_{x}\left\{V_{N}<V_{0}\right\}, x \in \mathbb{S}$, is the unique function such that $h(0)=0, h(N)=1$, and

$$
\begin{equation*}
h(x)=\sum_{y \in \mathbb{S}} p(x, y) h(y), \forall x \in \mathbb{S} \backslash\{0, N\}, \tag{17}
\end{equation*}
$$

where $p(\cdot, \cdot): \mathbb{S} \times \mathbb{S} \rightarrow[0,1]$ denotes the transition probability of given homogeneous Markov chain.
Now, let $g: \mathbb{S} \rightarrow \mathbb{R}$ to be $g(x):=\frac{x}{N}, x \in \mathbb{S}$. It's clear that $g(0)=0$ and $g(N)=1$. We claim that the function $g: \mathbb{S} \rightarrow \mathbb{R}$ satisfies the equation (17). Since $\left\{X_{n}\right\}_{n=0}^{\infty}$ is a martingale with respect to the canonical filtration $\left\{\mathcal{F}_{n}:=\sigma\left(X_{0}, X_{1}, \cdots, X_{n}\right)\right\}_{n=0}^{\infty}$, we have

$$
\begin{align*}
X_{n-1} & =\mathbb{E}_{\mu}\left[X_{n} \mid \mathcal{F}_{n-1}\right] \\
& =\mathbb{E}_{\mu}\left[X_{n}\left(\sum_{y \in \mathbb{S}} \mathbb{1}_{\left\{X_{n}=y\right\}}\right) \mid \mathcal{F}_{n-1}\right] \\
& \stackrel{(\text { a) }}{=} \sum_{y \in \mathbb{S}} \mathbb{E}_{\mu}\left[X_{n} \mathbb{1}_{\left\{X_{n}=y\right\}} \mid \mathcal{F}_{n-1}\right] \tag{18}\\
& =\sum_{y \in \mathbb{S}} \mathbb{E}_{\mu}\left[y \mathbb{1}_{\left\{X_{n}=y\right\}} \mid \mathcal{F}_{n-1}\right] \\
& =\sum_{y \in \mathbb{S}} y \cdot \mathbb{P}_{\mu}\left\{X_{n}=y \mid \mathcal{F}_{n-1}\right\} \\
& \stackrel{(\text { b) }}{=} \sum_{y \in \mathbb{S}} y \cdot p\left(X_{n-1}, y\right)
\end{align*}
$$

\mathbb{P}_{μ}-almost surely, where μ is any initial distribution of the Markov chain $\left\{X_{n}\right\}_{n=0}^{\infty}$, and the step (a) is valid since $\mathbb{S}=[0: N]$ is finite, the step (b) follows from the assumption that $\left\{X_{n}\right\}_{n=0}^{\infty}$ is a homogeneous Markov chain with transition probability $p(\cdot, \cdot)$. Thus, it follows from (18) that

$$
\begin{align*}
x & =\int_{\left\{X_{n-1}=x\right\}} X_{n-1} \mathrm{~d} \mathbb{P}_{\mu} \\
& =\int_{\left\{X_{n-1}=x\right\}}\left[\sum_{y \in \mathbb{S}} y \cdot p\left(X_{n-1}, y\right)\right] d \mathbb{P}_{\mu} \tag{19}\\
& =\sum_{y \in \mathbb{S}} y \int_{\left\{X_{n-1}=x\right\}} p\left(X_{n-1}, y\right) \mathrm{d} \mathbb{P}_{\mu} \\
& =\sum_{y \in \mathbb{S}} y \cdot p(x, y)
\end{align*}
$$

for every $x \in \mathbb{S}$, since $\left\{X_{n-1}=x\right\} \in \mathcal{F}_{n-1}$. Dividing the equation (19) by N yields

$$
g(x)=\sum_{y \in \mathbb{S}} p(x, y) g(y), \forall x \in \mathbb{S}
$$

thereby the function $g: \mathbb{S} \rightarrow \mathbb{R}$ satisfies the equation (17). From the uniqueness of such a function h, one can deduce $g \equiv h$ on \mathbb{S}. Hence,

$$
\mathbb{P}_{x}\left\{V_{N}<V_{0}\right\}=h(x)=g(x)=\frac{x}{N}
$$

for all $x \in \mathbb{S}=[0: N]$.

Problem 6 (Exercise 5.2.11. in [1]: Exit times).
(i) Fix any $x \in \mathbb{S} \backslash A$, and consider the following two cases:
(Case \#1) $\mathbb{P}_{x}\left\{V_{A}=+\infty\right\}>0$: Define $Z: \Omega_{0} \rightarrow \mathbb{R}$ by $Z(\omega):=\mathbb{1}_{\left\{V_{A}=+\infty\right\}}(\omega)$ for $\omega \in \Omega_{0}$. Then for every $x \in \mathbb{S} \backslash A$,

$$
\begin{align*}
\mathbb{P}_{x}\left\{V_{A}=+\infty\right\} & =\mathbb{E}_{x}[Z] \\
& \stackrel{(\mathrm{a})}{=} \mathbb{E}_{x}\left[Z \circ \theta_{1}\right] \\
& =\mathbb{E}_{x}\left[\mathbb{E}_{x}\left[Z \circ \theta_{1} \mid \mathcal{F}_{1}\right]\right] \\
& \stackrel{(\mathrm{b})}{=} \mathbb{E}_{x}\left[\mathbb{E}_{X_{1}}[Z]\right] \\
& =\mathbb{E}_{x}\left[\mathbb{E}_{X_{1}}[Z]\left(\sum_{y \in \mathbb{S}} \mathbb{1}_{\left\{X_{1}=y\right\}}\right)\right] \\
& \stackrel{(\mathrm{c})}{=} \sum_{y \in \mathbb{S}} \mathbb{E}_{x}\left[\mathbb{E}_{X_{1}}[Z] \mathbb{1}_{\left\{X_{1}=y\right\}}\right] \tag{20}\\
& =\sum_{y \in \mathbb{S}} \mathbb{E}_{x}\left[\mathbb{E}_{y}[Z] \mathbb{1}_{\left\{X_{1}=y\right\}}\right] \\
& =\sum_{y \in \mathbb{S}} \underbrace{\mathbb{P}_{x}\left\{X_{1}=y\right\}}_{=p(x, y)} \mathbb{E}_{y}[Z] \\
& =\sum_{y \in \mathbb{S}} p(x, y) \cdot \mathbb{P}_{y}\left\{V_{A}=+\infty\right\}>0 .
\end{align*}
$$

Here, the above steps (a)-(c) can be justified as follows:
(a) Since $x \in \mathbb{S} \backslash A, Z=Z \circ \theta_{1}$ if $X_{0}=x$;
(b) Since Z is a bounded, measurable function defined on the sequence space $\left(\Omega_{0}, \mathcal{F}_{\infty}\right)$, we can apply the Markov property (Theorem 5.2.3 in [1]) and the step (b) follows;
(c) the Fubini-Tonelli's theorem, since the summands are non-negative.

The inequality (20) implies $p(x, y) \cdot \mathbb{P}_{y}\left\{V_{A}=+\infty\right\}>0$ for some $y \in \mathbb{S}$. As a consequence, we have

$$
p(x, y) g(y)=p(x, y) \cdot \mathbb{E}_{y}\left[V_{A}\right] \geq p(x, y) \cdot \mathbb{E}_{y}\left[V_{A} \cdot \mathbb{1}_{\left\{V_{A}=+\infty\right\}}\right] \stackrel{(\mathrm{d})}{=}+\infty
$$

where the step (d) holds since $p(x, y)>0$ and $\mathbb{P}_{y}\left\{V_{A}=+\infty\right\}>0$. Hence, we arrive at

$$
1+\sum_{y \in \mathbb{S}} p(x, y) g(y)=+\infty \stackrel{(e)}{=} \mathbb{E}_{x}\left[V_{A}\right]=g(x)
$$

where the step (e) follows from the assumption $\mathbb{P}_{x}\left\{V_{A}=+\infty\right\}>0$.
(Case \#2) $\mathbb{P}_{x}\left\{V_{A}=+\infty\right\}=0$: Then, we have from the monotone convergence theorem that

$$
\begin{equation*}
g(x)=\mathbb{E}_{x}\left[V_{A}\right] \stackrel{(\mathrm{f})}{=} \mathbb{E}_{x}\left[V_{A} \cdot \mathbb{1}_{\left\{V_{A}<+\infty\right\}}\right]=\lim _{n \rightarrow \infty} \uparrow \mathbb{E}_{x}\left[V_{A} \cdot \mathbb{1}_{\left\{V_{A} \leq n\right\}}\right], \tag{21}
\end{equation*}
$$

where the step (f) is due to the assumption $\mathbb{P}_{x}\left\{V_{A}=+\infty\right\}=0$. Define $Y_{n}: \Omega_{0} \rightarrow \mathbb{R}$ for $n \in \mathbb{Z}_{+}$by

$$
Y_{n}(\omega):=V_{A}(\omega) \cdot \mathbb{1}_{\left\{V_{A} \leq n\right\}}(\omega), \forall \omega \in \Omega_{0}
$$

As $\left|Y_{n}\right|=\left|V_{A} \cdot \mathbb{1}_{\left\{V_{A} \leq n\right\}}\right| \leq n \cdot \mathbb{1}_{\left\{V_{A} \leq n\right\}}$ on Ω_{0}, every Y_{n} is a bounded, measurable function defined on the sequence space $\left(\Omega_{0}, \mathcal{F}_{\infty}\right)$. One can see that if $X_{0} \in \mathbb{S} \backslash A$,

$$
\begin{aligned}
\left(Y_{n} \circ \theta_{1}\right)(\omega) & =V_{A}\left(\theta_{1}(\omega)\right) \cdot \mathbb{1}_{\left\{V_{A}\left(\theta_{1}(\omega)\right) \leq n\right\}} \\
& \stackrel{(\mathrm{g})}{=}\left(V_{A}(\omega)-1\right) \mathbb{1}_{\left\{V_{A}(\omega)-1 \leq n\right\}} \\
& =V_{A}(\omega) \cdot \mathbb{1}_{\left\{V_{A} \leq n+1\right\}}(\omega)-\mathbb{1}_{\left\{V_{A} \leq n+1\right\}}(\omega) \\
& =Y_{n+1}(\omega)-\mathbb{1}_{\left\{V_{A} \leq n+1\right\}}(\omega)
\end{aligned}
$$

for every $\omega \in \Omega_{0}$ and $n \in \mathbb{Z}_{+}$, where the step (g) holds since if $V_{A}(\omega) \geq 1$, then $V_{A}(\omega)=V_{A}\left(\theta_{1}(\omega)\right)+1$. Thus, $Y_{n}=\left(Y_{n-1} \circ \theta_{1}\right)+\mathbb{1}_{\left\{V_{A} \leq n\right\}}$ on Ω_{0}. Hence,

$$
\begin{align*}
\mathbb{E}_{x}\left[V_{A} \cdot \mathbb{1}_{\left\{V_{A} \leq n\right\}}\right] & =\mathbb{E}_{x}\left[Y_{n}\right] \\
& =\mathbb{E}_{x}\left[Y_{n-1} \circ \theta_{1}\right]+\mathbb{P}_{x}\left\{V_{A} \leq n\right\} \\
& =\mathbb{E}_{x}\left[\mathbb{E}_{x}\left[Y_{n-1} \circ \theta_{1} \mid \mathcal{F}_{1}\right]\right]+\mathbb{P}_{x}\left\{V_{A} \leq n\right\} \tag{22}\\
& \stackrel{(\mathrm{h})}{=} \mathbb{E}_{x}\left[\mathbb{E}_{X_{1}}\left[Y_{n-1}\right]\right]+\mathbb{P}_{x}\left\{V_{A} \leq n\right\},
\end{align*}
$$

where the step (h) is due to the Markov property (Theorem 5.2.3 in [1]). Here, $\left\{\mathcal{F}_{n}:=\sigma\left(X_{0}, X_{1}, \cdots, X_{n}\right)\right\}_{n=0}^{\infty}$ refers to the canonical filtration of $\left\{X_{n}\right\}_{n=0}^{\infty}$. By letting $n \rightarrow \infty$ in the equation (22), it follows that

$$
\begin{aligned}
& g(x) \stackrel{(\mathrm{i})}{=} \lim _{n \rightarrow \infty} \uparrow \mathbb{E}_{x}\left[V_{A} \cdot \mathbb{1}_{\left\{V_{A} \leq n\right\}}\right] \\
&=\lim _{n \rightarrow \infty} \uparrow \mathbb{E}_{x}\left[\mathbb{E}_{X_{1}}\left[Y_{n-1}\right]\right]+\mathbb{P}_{x}\left\{V_{A}<+\infty\right\} \\
& \stackrel{(\mathrm{j})}{=} \mathbb{E}_{x}\left[\mathbb{E}_{X_{1}}\left[V_{A} \cdot \mathbb{1}_{\left\{V_{A}<+\infty\right\}}\right]\right]+1 \\
&=\mathbb{E}_{x}\left[\sum_{y \in \mathbb{S}} \mathbb{E}_{X_{1}}\left[V_{A} \cdot \mathbb{1}_{\left\{V_{A}<+\infty\right\}}\right] \mathbb{1}_{\left\{X_{1}=y\right\}}\right]+1 \\
& \stackrel{(\mathrm{k})}{=} \sum_{y \in \mathbb{S}} \mathbb{E}_{x}\left[\mathbb{E}_{X_{1}}\left[V_{A} \cdot \mathbb{1}_{\left\{V_{A}<+\infty\right\}}\right] \mathbb{1}_{\left\{X_{1}=y\right\}}\right]+1 \\
&=\sum_{y \in \mathbb{S}} \mathbb{E}_{x}\left[\mathbb{E}_{y}\left[V_{A} \cdot \mathbb{1}_{\left\{V_{A}<+\infty\right\}}\right] \mathbb{1}_{\left\{X_{1}=y\right\}}\right]+1 \\
&=\sum_{y \in \mathbb{S}} p(x, y) \mathbb{E}_{y}\left[V_{A} \cdot \mathbb{1}_{\left\{V_{A}<+\infty\right\}}\right]+1 \\
& \stackrel{(\mathrm{l})}{=} \sum_{y \in \mathbb{S}} p(x, y) \underbrace{\mathbb{E}_{y}\left[V_{A}\right]}_{=g(y)}+1, \\
&
\end{aligned}
$$

thereby it establishes our desired result. The steps (i)-(l) can be validated via the following reasons:
(i) the equality (21);
(j) the monotone convergence theorem together with the assumption $\mathbb{P}_{x}\left\{V_{A}=+\infty\right\}=0$;
(k) the Fubini-Tonelli's theorem, since the summands are non-negative;
(1) to see this step, we should verify that $\mathbb{P}_{y}\left\{V_{A}<+\infty\right\}=1$ for all $y \in \mathbb{S}$. By subtracting (20) from

1, we obtain

$$
\begin{align*}
1 & =\mathbb{P}_{x}\left\{V_{A}<+\infty\right\} \\
& =1-\mathbb{P}_{x}\left\{V_{A}=+\infty\right\} \\
& =\sum_{y \in \mathbb{S}} p(x, y)-\sum_{y \in \mathbb{S}} p(x, y) \cdot \mathbb{P}_{y}\left\{V_{A}=+\infty\right\} \\
& =\sum_{y \in \mathbb{S}} p(x, y) \cdot \mathbb{P}_{y}\left\{V_{A}<+\infty\right\} \tag{23}\\
& \leq \sum_{y \in \mathbb{S}} p(x, y) \\
& =1,
\end{align*}
$$

so all the inequalities in (23) are in fact equalities. Thus, we get $\mathbb{P}_{y}\left\{V_{A}<+\infty\right\}=1$ for all $y \in \mathbb{S}$. Combining all the arguments of the above two cases completes the proof of the problem (i).
(ii) For convenience, we define $M_{n}:=g\left(X_{n \wedge V_{A}}\right)+\left(n \wedge V_{A}\right)$ for $n \in \mathbb{Z}_{+}$, for any function $g: \mathbb{S} \rightarrow[0,+\infty)$ satisfying the given condition (*). Then, M_{n} can be written by

$$
\begin{equation*}
M_{n}=\left\{g\left(X_{n}\right)+n\right\} \mathbb{1}_{\left\{V_{A}>n\right\}}+\sum_{k=0}^{n}\left\{g\left(X_{k}\right)+k\right\} \mathbb{1}_{\left\{V_{A}=k\right\}} . \tag{24}
\end{equation*}
$$

Let $L:=\sup \{|g(x)|: x \in \mathbb{S} \backslash A\}$, which is finite since $\mathbb{S} \backslash A$ is a finite set. If $V_{A}>n$, then $X_{n} \in \mathbb{S} \backslash A$ and it follows that

$$
\begin{equation*}
\left|\left\{g\left(X_{n}\right)+n\right\} \mathbb{1}_{\left\{V_{A}>n\right\}}\right| \leq(L+n) \cdot \mathbb{1}_{\left\{V_{A}>n\right\}} . \tag{25}
\end{equation*}
$$

Also, since $\left\{V_{A}=k\right\}=\left\{X_{0} \in \mathbb{S} \backslash A, \cdots, X_{k-1} \in \mathbb{S} \backslash A, X_{k} \in A\right\}$, we have

$$
\begin{align*}
& \mathbb{E}_{\mu}\left[g\left(X_{k}\right) \mathbb{1}_{\left\{V_{A}=k\right\}}\right]=\mathbb{E}_{\mu}\left[\prod_{j=0}^{k-1} \mathbb{1}_{\mathbb{S} \backslash A}\left(X_{j}\right)\left\{\mathbb{1}_{A}\left(X_{k}\right) g\left(X_{k}\right)\right\}\right] \\
& \leq \mathbb{E}_{\mu}\left[\prod_{j=0}^{k-1} \mathbb{1}_{\mathbb{S} \backslash A}\left(X_{j}\right) g\left(X_{k}\right)\right] \\
& \stackrel{(\mathrm{m})}{=} \sum_{x_{0} \in \mathbb{S} \backslash A} \mu\left(x_{0}\right)\left[\sum_{x_{1} \in \mathbb{S} \backslash A} p\left(x_{0}, x_{1}\right)\right. \\
& [\cdots[\sum_{x_{k-1} \in \mathbb{S} \backslash A} p\left(x_{k-2}, x_{k-1}\right) \underbrace{\left[\sum_{x_{k} \in \mathbb{S}} p\left(x_{k-1}, x_{k}\right) g\left(x_{k}\right)\right]}_{=g\left(x_{k-1}\right)}] \cdots]] \tag{26}\\
& \stackrel{(\mathrm{n})}{=} \sum_{x_{0} \in \mathbb{S} \backslash A} \mu\left(x_{0}\right)\left[\sum_{x_{1} \in \mathbb{S} \backslash A} p\left(x_{0}, x_{1}\right)\right. \\
& \left.\left[\cdots\left[\sum_{x_{k-1} \in \mathbb{S} \backslash A} p\left(x_{k-2}, x_{k-1}\right) g\left(x_{k-1}\right)\right] \cdots\right]\right] \\
& \stackrel{(\mathrm{o})}{=} \mathbb{E}_{\mu}\left[\sum_{j=0}^{k-1} \mathbb{1}_{\mathbb{S} \backslash A}\left(X_{j}\right) g\left(X_{k-1}\right)\right] \\
& =\mathbb{E}_{\mu}\left[g\left(X_{k-1}\right) \mathbb{1}_{\left\{V_{A}=k\right\}}\right] \\
& \stackrel{(\mathrm{p})}{\leq} L \cdot \mathbb{1}_{\left\{V_{A}=k\right\}} .
\end{align*}
$$

Here, the above steps (m)-(p) are based on the following reasons:
(m) the equation (5.2.3) in [1];
(n) the function g obeys the condition (*);
(o) the equation (5.2.3) in [1];
(p) if $V_{A}=k$, then $X_{k-1} \in \mathbb{S} \backslash A$ and so $g\left(X_{k-1}\right) \mathbb{1}_{\left\{V_{A}=k\right\}} \leq L \cdot \mathbb{1}_{\left\{V_{A}=k\right\}}$.

Combining (24) together with two pieces (25) and (26) yields for every $n \in \mathbb{Z}_{+}$,

$$
\left|M_{n}\right| \leq(L+n) \mathbb{1}_{\left\{V_{A}>n\right\}}+\sum_{k=0}^{n}(L+k) \mathbb{1}_{\left\{V_{A}=k\right\}} \leq L+n,
$$

thereby $M_{n} \in L^{1}\left(\Omega_{0}, \mathcal{F}_{\infty}, \mathbb{P}_{\mu}\right)$, i.e., each M_{n} is \mathbb{P}_{μ}-integrable. Now, we will prove that $\mathbb{E}_{\mu}\left[M_{n} \mid \mathcal{F}_{n-1}\right] \stackrel{\mathbb{P}_{\mu} \text {-a.s. }}{=}$ M_{n-1} for all $n \in \mathbb{N}$. We begin by noting that

$$
\begin{align*}
& \mathbb{E}_{\mu}\left[M_{n} \mid \mathcal{F}_{n-1}\right]=\mathbb{E}_{\mu}\left[\left\{g\left(X_{n}\right)+n\right\} \mathbb{1}_{\left\{V_{A} \geq n\right\}} \mid \mathcal{F}_{n-1}\right]+\sum_{k=0}^{n-1} \mathbb{E}_{\mu}\left[\left\{g\left(X_{k}\right)+k\right\} \mathbb{1}_{\left\{V_{A}=k\right\}} \mid \mathcal{F}_{n-1}\right] \tag{27}\\
& \stackrel{(\mathrm{q})}{=} \mathbb{E}_{\mu}\left[\left\{g\left(X_{n}\right)+n\right\} \mathbb{1}_{\left\{V_{A} \geq n\right\}} \mid \mathcal{F}_{n-1}\right]+\sum_{k=0}^{n-1}\left\{g\left(X_{k}\right)+k\right\} \mathbb{1}_{\left\{V_{A}=k\right\}}
\end{align*}
$$

\mathbb{P}_{μ}-almost surely, where the step (q) follows from the fact that $\left\{g\left(X_{k}\right)+k\right\} \mathbb{1}_{\left\{V_{A}=k\right\}}$ is \mathcal{F}_{k}-measurable for $k \in[0: n-1]$. At this point, we claim the following statement.

Claim 3. $\mathbb{E}_{\mu}\left[\left\{g\left(X_{n}\right)+n\right\} \mathbb{1}_{\left\{V_{A} \geq n\right\}} \mid \mathcal{F}_{n-1}\right] \stackrel{\mathbb{P}_{\mu \text {-a.s. }}^{=}}{=}\left\{g\left(X_{n-1}\right)+(n-1)\right\} \mathbb{1}_{\left\{V_{A} \geq n\right\}}$.
Proof of Claim 3.
To begin with, we notice that $\left\{g\left(X_{n-1}\right)+(n-1)\right\} \mathbb{1}_{\left\{V_{A} \geq n\right\}}$ is \mathcal{F}_{n-1}-measurable. As in the proof of Claim 2 , let $\mathcal{P}_{k}:=\left\{\left\{\omega \in \Omega_{0}: \omega_{0} \in A_{0}, \omega_{1} \in A_{1}, \cdots, \omega_{k} \in A_{k}\right\}: A_{0}, A_{1}, \cdots, A_{k} \in \mathcal{S}=2^{\mathbb{S}}\right\}$ for $k \in \mathbb{Z}_{+}$. Then, \mathcal{P}_{k} is a π-system on Ω_{0} with $\mathcal{F}_{k}=\sigma\left(\mathcal{P}_{k}\right)$. Also, define

$$
\mathcal{L}_{k}:=\left\{E \in \mathcal{F}_{k}: \mathbb{E}_{\mu}\left[\left\{g\left(X_{k+1}\right)+(k+1)\right\} \mathbb{1}_{\left\{V_{A} \geq k+1\right\}} \cdot \mathbb{1}_{E}\right]=\mathbb{E}_{\mu}\left[\left\{g\left(X_{k}\right)+k\right\} \mathbb{1}_{\left\{V_{A} \geq k+1\right\}} \cdot \mathbb{1}_{E}\right]\right\}, \forall k \in \mathbb{Z}_{+} .
$$

It suffices to show that $\mathcal{L}_{n-1}=\mathcal{F}_{n-1}$. As a next step, we prove $\mathcal{P}_{n-1} \subseteq \mathcal{L}_{n-1}$. Given any $E \in \mathcal{P}_{n-1}$, it can be written by

$$
E=\left\{\omega \in \Omega_{0}: \omega_{0} \in A_{0}, \omega_{1} \in A_{1}, \cdots, \omega_{n-1} \in A_{n-1}\right\}
$$

for some $A_{0}, A_{1}, \cdots, A_{n-1} \in \mathcal{S}=2^{\mathbb{S}}$. It's clear from $\left\{V_{A} \geq n\right\}=\left\{X_{0} \in \mathbb{S} \backslash A, X_{1} \in \mathbb{S} \backslash A, \cdots, X_{n-1} \in \mathbb{S} \backslash A\right\}$ that

$$
\mathbb{1}_{\left\{V_{A} \geq n\right\}}(\omega)=\sum_{k=0}^{n-1} \mathbb{1}_{\mathbb{S} \backslash A}\left(\omega_{k}\right), \quad \forall \omega \in \Omega_{0}
$$

Hence, we arrive at

$$
\begin{aligned}
\mathbb{E}_{\mu}\left[\left\{g\left(X_{n}\right)+n\right\} \mathbb{1}_{\left\{V_{A} \geq n\right\}} \cdot \mathbb{1}_{E}\right] & =\mathbb{E}_{\mu}\left[\left(\prod_{k=0}^{n-1} \mathbb{1}_{(\mathbb{S} \backslash A) \cap A_{k}}\left(X_{k}\right)\right)\left\{g\left(X_{n}\right)+n\right\}\right] \\
& \stackrel{(\mathrm{r})}{=} \sum_{x_{0} \in(\mathbb{S} \backslash A) \cap A_{0}} \mu\left(x_{0}\right)\left[\sum_{x_{1} \in(\mathbb{S} \backslash A) \cap A_{1}} p\left(x_{0}, x_{1}\right)\right. \\
& {\left.\left[\cdots\left[\sum_{x_{n-1} \in(\mathbb{S} \backslash A) \cap A_{n-1}} p\left(x_{n-2}, x_{n-1}\right)\left[\sum_{x_{n} \in \mathbb{S}} p\left(x_{n-1}, x_{n}\right)\left\{g\left(x_{n}\right)+n\right\}\right]\right] \cdots\right]\right] } \\
& \stackrel{(\mathrm{s})}{=} \sum_{x_{0} \in(\mathbb{S} \backslash A) \cap A_{0}} \mu\left(x_{0}\right)\left[\sum_{x_{1} \in(\mathbb{S} \backslash A) \cap A_{1}} p\left(x_{0}, x_{1}\right)\right. \\
& {\left.\left[\cdots\left[\sum_{x_{n-1} \in(\mathbb{S} \backslash A) \cap A_{n-1}} p\left(x_{n-2}, x_{n-1}\right)\left\{g\left(x_{n-1}\right)+(n-1)\right\}\right] \cdots\right]\right] } \\
& \stackrel{(\mathrm{t})}{=} \mathbb{E}_{\mu}\left[\left(\prod_{k=0}^{n-1} \mathbb{1}_{(\mathbb{S} \backslash A) \cap A_{k}}\left(X_{k}\right)\right)\left\{g\left(X_{n-1}\right)+(n-1)\right\}\right] \\
& =\mathbb{E}_{\mu}\left[\left\{g\left(X_{n-1}\right)+(n-1)\right\} \mathbb{1}_{\left\{V_{A} \geq n\right\}} \cdot \mathbb{1}_{E}\right]
\end{aligned}
$$

thereby $E \in \mathcal{L}_{n-1}$. Each steps (r)-(t) are valid since:
(r) the equation (5.2.3) in [1];
(s) for $x_{n-1} \in \mathbb{S} \backslash A$, we have

$$
\begin{aligned}
\sum_{x_{n} \in \mathbb{S}} p\left(x_{n-1}, x_{n}\right)\left\{g\left(x_{n}\right)+n\right\} & =\left[1+\sum_{x_{n} \in \mathbb{S}} p\left(x_{n-1}, x_{n}\right)\right]+(n-1) \\
& =g\left(x_{n-1}\right)+(n-1),
\end{aligned}
$$

because the function g satisfies the condition $(*)$;
(t$)$ the equation (5.2.3) in [1].
Therefore, $\mathcal{P}_{n-1} \subseteq \mathcal{L}_{n-1}$. From the same argument as in the proof of Claim 2, one can easily see that \mathcal{L}_{n-1} is a λ-system on Ω_{0}. Employing the π - λ theorem, we eventually obtain $\mathcal{L}_{n-1}=\sigma\left(\mathcal{P}_{n-1}\right)=\mathcal{F}_{n-1}$, and this completes the proof of Claim 3.

Finally, we can finish the proof of the statement (ii) of this problem. Indeed, from (27) one has

$$
\begin{aligned}
\mathbb{E}_{\mu}\left[M_{n} \mid \mathcal{F}_{n-1}\right] & =\mathbb{E}_{\mu}\left[\left\{g\left(X_{n}\right)+n\right\} \mathbb{1}_{\left\{V_{A} \geq n\right\}} \mid \mathcal{F}_{n-1}\right]+\sum_{k=0}^{n-1}\left\{g\left(X_{k}\right)+k\right\} \mathbb{1}_{\left\{V_{A}=k\right\}} \\
& \stackrel{(\mathrm{u})}{=}\left\{g\left(X_{n-1}\right)+(n-1)\right\} \mathbb{1}_{\left\{V_{A} \geq n\right\}}+\sum_{k=0}^{n-1}\left\{g\left(X_{k}\right)+k\right\} \mathbb{1}_{\left\{V_{A}=k\right\}} \\
& =\left\{g\left(X_{n-1}\right)+(n-1)\right\} \mathbb{1}_{\left\{V_{A} \geq n-1\right\}}+\sum_{k=0}^{n-2}\left\{g\left(X_{k}\right)+k\right\} \mathbb{1}_{\left\{V_{A}=k\right\}} \\
& =M_{n-1}
\end{aligned}
$$

\mathbb{P}_{μ}-almost surely, where the step (u) follows from Claim 3. So, $\left\{M_{n}=g\left(X_{n \wedge V_{A}}\right)+\left(n \wedge V_{A}\right)\right\}_{n=0}^{\infty}$ is a martingale with respect to the canonical filtration $\left\{\mathcal{F}_{n}=\sigma\left(X_{0}, X_{1}, \cdots, X_{n}\right)\right\}_{n=0}^{\infty}$ for any function $g: \mathbb{S} \rightarrow[0,+\infty)$ that satisfies the condition $(*)$. As a final remark, we note that the statement (ii) also holds for any bounded function $g: \mathbb{S} \rightarrow \mathbb{R}$ which satisfies the condition $(*)$. The \mathbb{P}_{μ}-integrability is immediate from the boundedness of g, and the remaining steps are completely identical. Hence, $\left\{g\left(X_{n \wedge V_{A}}\right)+\left(n \wedge V_{A}\right)\right\}_{n=0}^{\infty}$ is a martingale with respect to the canonical filtration $\left\{\mathcal{F}_{n}\right\}_{n=0}^{\infty}$ for any non-negative or bounded function $g: \mathbb{S} \rightarrow \mathbb{R}$ obeying the condition $(*)$.
(iii) Let $h: \mathbb{S} \rightarrow \mathbb{R}$ be any function satisfying

$$
h(x)=1+\sum_{y \in \mathbb{S}} p(x, y) h(y), \forall x \in \mathbb{S} \backslash A,
$$

together with $h(x)=0$ for all $x \in A$. So, $\sup _{x \in \mathbb{S}}|h(x)|=\sup _{x \in \mathbb{S} \backslash A}|h(x)|<+\infty$, since $\mathbb{S} \backslash A$ is finite. Thus, h is bounded and likewise, g is also a bounded function which satisfies the condition $(*)$ and $g(x)=0$ for all $x \in A$. As the second statement (ii) of this problem holds for any bounded function satisfying the condition (*), both $\left\{g\left(X_{n \wedge V_{A}}\right)+\left(n \wedge V_{A}\right)\right\}_{n=0}^{\infty}$ and $\left\{h\left(X_{n \wedge V_{A}}\right)+\left(n \wedge V_{A}\right)\right\}_{n=0}^{\infty}$ are martingales with respect to the canonical filtration $\left\{\mathcal{F}_{n}=\sigma\left(X_{0}, X_{1}, \cdots, X_{n}\right)\right\}_{n=0}^{\infty}$. Now, define $f:=g-h: \mathbb{S} \rightarrow \mathbb{R}$. Then, $\left\{f\left(X_{n \wedge V_{A}}\right)\right\}_{n=0}^{\infty}$ also forms a martingale with respect to the canonical filtration $\left\{\mathcal{F}_{n}\right\}_{n=0}^{\infty}$, since

$$
f\left(X_{n \wedge V_{A}}\right)=\left\{g\left(X_{n \wedge V_{A}}\right)+\left(n \wedge V_{A}\right)\right\}-\left\{h\left(X_{n \wedge V_{A}}\right)+\left(n \wedge V_{A}\right)\right\} .
$$

Hence for any $x \in \mathbb{S} \backslash A$, we have

$$
\begin{align*}
f(x) & =\mathbb{E}_{x}\left[f\left(X_{0 \wedge V_{A}}\right)\right] \\
& \stackrel{(\mathrm{v})}{=} \mathbb{E}_{x}\left[f\left(X_{n \wedge V_{A}}\right)\right] \\
& =\mathbb{E}_{x}\left[f\left(X_{n}\right) \mathbb{1}_{\left\{V_{A}>n\right\}}\right]+\sum_{k=0}^{n} \mathbb{E}_{x}\left[f\left(X_{k}\right) \mathbb{1}_{\left\{V_{A}=k\right\}}\right] \tag{28}\\
& \stackrel{(\mathrm{w})}{=} \mathbb{E}_{x}\left[f\left(X_{n}\right) \mathbb{1}_{\left\{V_{A}>n\right\}}\right],
\end{align*}
$$

for every $n \in \mathbb{Z}_{+}$, where the step (v) holds since $\left\{f\left(X_{n \wedge V_{A}}\right)\right\}_{n=0}^{\infty}$ is a martingale with respect to $\left\{\mathcal{F}_{n}\right\}_{n=0}^{\infty}$, and the step (w) is owing to the fact that if $V_{A}=k$, then $X_{k} \in A$ together with the fact $f(x)=g(x)-h(x)=0$ for all $x \in A$. As both g and h are bounded, so is f. Thus, $L:=\sup \{|f(x)|: x \in \mathbb{S}\}<+\infty$. Then, we obtain from (28) that

$$
\begin{equation*}
|f(x)|=\left|\mathbb{E}_{x}\left[f\left(X_{n}\right) \mathbb{1}_{\left\{V_{A}>n\right\}}\right]\right| \leq \mathbb{E}_{x}\left[\left|f\left(X_{n}\right)\right| \mathbb{1}_{\left\{V_{A}>n\right\}}\right] \leq L \cdot \mathbb{P}_{x}\left\{V_{A}>n\right\} \tag{29}
\end{equation*}
$$

for all $x \in \mathbb{S} \backslash A$ and $n \in \mathbb{Z}_{+}$.
On the other hand, it's clear that $\mathbb{S} \backslash A$ is finite, and $\mathbb{P}_{x}\left\{T_{A}<+\infty\right\}=\mathbb{P}_{x}\left\{V_{A}<+\infty\right\}<+\infty$ for every $x \in \mathbb{S} \backslash A$ from the assumptions of the problem. So, we can apply Problem (3) (Exercise 5.2.6. in [1]): there is an $N \in \mathbb{N}$ and $\epsilon>0$ such that $\mathbb{P}_{y}\left\{T_{A}>k N\right\} \leq(1-\epsilon)^{k}$ for all $k \in \mathbb{N}$ and $y \in \mathbb{S} \backslash C$. Plugging $n=k N$ into the bound (29) produces for every $x \in \mathbb{S} \backslash A$,

$$
|f(x)|=L \cdot \mathbb{P}_{x}\left\{V_{A}>k N\right\}=L \cdot \mathbb{P}_{x}\left\{T_{A}>k N\right\} \leq L(1-\epsilon)^{k}
$$

for all $k \in \mathbb{N}$. By letting $k \rightarrow \infty$, it gives $f(x)=0$ for all $x \in \mathbb{S} \backslash A$. Hence, $f=g-h \equiv 0$ on \mathbb{S}, thereby $h(x)=g(x)=\mathbb{E}_{x}\left[V_{A}\right]$ for all $x \in \mathbb{S}$. This establishes our desired result.

References

[1] Rick Durrett. Probability: theory and examples, volume 49. Cambridge university press, 2019.

