MAS651 Theory of Stochastic Processes Homework \#11

20150597 Jeonghwan Lee
Department of Mathematical Sciences, KAIST

June 15, 2021

Throughout this homework, let \mathbb{Z}_{+}denote the set of all non-negative integers, \mathbb{R}_{+}be the set of all nonnegative real numbers, and $[a: b]:=\{a, a+1, \cdots, b-1, b\}$ for $a, b \in \mathbb{Z}$ with $a \leq b$. We also write $[n]:=[1: n]$ for $n \in \mathbb{N}$. Moreover, \biguplus denotes the disjoint union, and given a set A and $k \in \mathbb{Z}_{+},\binom{A}{k}:=\{B \subseteq A:|B|=k\}$.

Problem 1 (Exercise 8.4.1. in [1]).
We recall from the definition of Brownian bridges that

$$
\begin{equation*}
\mathbb{P}\left\{B^{0}(\cdot) \in A\right\}=\mathbb{P}\left\{\pi_{1}\{B(\cdot)\} \in A \mid B(1)=0\right\} \tag{1}
\end{equation*}
$$

for every $A \in \mathcal{C}([0,1], \mathbb{R})$, where $\pi_{1}(\cdot):(C([0,+\infty), \mathbb{R}), \mathcal{C}([0,+\infty), \mathbb{R})) \rightarrow(C([0,1], \mathbb{R}), \mathcal{C}([0,1], \mathbb{R}))$ refers to the canonical projection map defined by $\pi_{1}(\Phi):=\left.\Phi\right|_{[0,1]},\left\{B^{0}(t): t \in[0,1]\right\}$ is a Brownian bridge defined on the underlying probability space $(\Omega, \mathcal{F}, \mathbb{P})$, and $\left\{B(t): t \in \mathbb{R}_{+}\right\}$is a standard one-dimensional Brownian motion defined on $(\Omega, \mathcal{F}, \mathbb{P})$. Let $\left\{M(t): t \in \mathbb{R}_{+}\right\}$be the maximum process of the standard one-dimensional Brownian motion $\left\{B(t): t \in \mathbb{R}_{+}\right\}$, i.e.,

$$
M(t):=\max \{B(s): s \in[0, t]\}, \forall t \in \mathbb{R}_{+} .
$$

Then, we have

$$
\begin{aligned}
\mathbb{P}\left\{\max \left\{B^{0}(t): t \in[0,1]\right\}>b\right\} & \stackrel{(a)}{=} \mathbb{P}\{\max \{B(t): t \in[0,1]\}>b \mid B(1)=0\} \\
& =\mathbb{P}\{M(1)>b \mid B(1)=0\} \\
& =\frac{\mathbb{P}\{M(1)>b, B(1)=0\}}{p_{1}(0,0)} \\
& \stackrel{(\text { b) }}{=} \frac{\mathbb{P}\left\{T_{b}<1, B(1)=0\right\}}{p_{1}(0,0)} \\
& \stackrel{(\text { c) })}{=} \frac{p_{1}(0,2 b)}{p_{1}(0,0)} \\
& =\frac{\frac{1}{\sqrt{2 \pi}} \exp \left\{-\frac{1}{2}(2 b)^{2}\right\}}{\frac{1}{\sqrt{2 \pi}}} \\
& =\exp \left(-2 b^{2}\right),
\end{aligned}
$$

as desired, where the steps (a)-(c) can be justified as follows:
(a) the equation (1);
(b) The \mathbb{P}-a.s. continuity of the Brownian paths implies $\{M(1)>b\} \cap \mathcal{B}=\left\{T_{b}<1\right\} \cap \mathcal{B}$, where

$$
\mathcal{B}:=\left\{\omega \in \Omega: \text { the sample path of }\left\{B(t): t \in \mathbb{R}_{+}\right\} \text {is continuous everywhere. }\right\} \in \mathcal{F},
$$

since $B(0)=0$. Thus we have $\mathbb{P}\left\{\{M(1)>b\} \triangle\left\{T_{b}<1\right\}\right\}=0 ;$
(c) the Exercise 7.4.3-(b) in [1].

Problem 2 (Exercise 8.4.2. in [1]).
Let $\left\{B(t): t \in \mathbb{R}_{+}\right\}$be a standard one-dimensional Brownian motion defined on $(\Omega, \mathcal{F}, \mathbb{P})$, and $\{X(t): t \in[0,1]\}$ be a continuous-time stochastic process on $(\Omega, \mathcal{F}, \mathbb{P})$ given by

$$
X(t):=(1-t) B\left(\frac{t}{1-t}\right), \forall t \in[0,1),
$$

and $X(1):=0$. Let $\mathcal{B}:=\left\{\omega \in \Omega\right.$: the sample path of $\left\{B(t): t \in \mathbb{R}_{+}\right\}$is continuous everywhere $\} \in \mathcal{F}$. It's clear that the sample path of $\{X(t): t \in[0,1]\}$ at $\omega \in \mathcal{B}$ is continuous on $[0,1)$. According to Theorem 7.2.6 in [1], we know that

$$
\lim _{t \downarrow 0^{+}} t \cdot B\left(\frac{1}{t}\right)=0 \quad \mathbb{P} \text {-almost surely. }
$$

Let $\mathcal{E}:=\left\{\omega \in \Omega: \lim _{t \downarrow 0^{+}} t \cdot B_{\frac{1}{t}}(\omega)=0\right\} \in \mathcal{F}$. Since $\mathbb{P}\{\mathcal{B}\}=\mathbb{P}\{\mathcal{E}\}=1$, we obtain $\mathbb{P}\{\mathcal{B} \cap \mathcal{E}\}=1$ and when $\omega \in \mathcal{B} \cap \mathcal{E}$, we see that

$$
\begin{align*}
\lim _{t \uparrow 1^{-}} X_{t}(\omega) & =\lim _{t \uparrow 1^{-}}(1-t) B_{\frac{t}{1-t}}(\omega) \\
& \stackrel{(\mathrm{a})}{=} \lim _{u \rightarrow+\infty} \frac{B_{u}(\omega)}{u} \cdot \frac{u}{1+u} \\
& \stackrel{(\mathrm{~b})}{=} \lim _{v \downarrow 0^{+}} v \cdot B_{\frac{1}{v}}(\omega) \cdot \frac{1}{1+v} \tag{2}\\
& =0=X_{1}(\omega),
\end{align*}
$$

where the step (a) makes use of the substitution $u=\frac{t}{1-t}$, and the step (b) utilizes the substitution $v=\frac{1}{u}$. Thus we may conclude that the sample path of $\{X(t): t \in[0,1]\}$ at $\omega \in \mathcal{B} \cap \mathcal{F}$ is continuous everywhere, thereby the sample path of $\{X(t): t \in[0,1]\}$ is continuous everywhere for \mathbb{P}-a.s. $\omega \in \Omega$.

Now, it remains to show that $\{X(t): t \in[0,1]\}$ has the same joint law as $\left\{B^{0}(t): t \in[0,1]\right\}$ under \mathbb{P}, where $\left\{B^{0}(t): t \in[0,1]\right\}$ is a Brownian bridge defined on $(\Omega, \mathcal{F}, \mathbb{P})$. Since $X(0)=X(1)=B^{0}(0)=B^{0}(1)=0$ \mathbb{P}-almost surely, it suffices to prove that for every $0<t_{1}<t_{2}<\cdots<t_{n}<1$,

$$
\begin{equation*}
\left(X\left(t_{1}\right), X\left(t_{2}\right), \cdots, X\left(t_{n}\right)\right) \stackrel{d}{=}\left(B^{0}\left(t_{1}\right), B^{0}\left(t_{2}\right), \cdots, B^{0}\left(t_{n}\right)\right) \tag{3}
\end{equation*}
$$

under \mathbb{P}. Since we know from the equation 8.4 .3 in $[1]$ that $\left\{B^{0}(t): t \in[0,1]\right\}$ and $\{B(t)-t \cdot B(1): t \in[0,1]\}$ have the same joint law under \mathbb{P}. From

$$
\left[\begin{array}{c}
B^{0}\left(t_{1}\right) \\
B^{0}\left(t_{2}\right) \\
\vdots \\
B^{0}\left(t_{n}\right)
\end{array}\right] \stackrel{d}{=}\left[\begin{array}{c}
B\left(t_{1}\right)-t_{1} \cdot B(1) \\
B\left(t_{2}\right)-t_{2} \cdot B(1) \\
\vdots \\
B\left(t_{n}\right)-t_{n} \cdot B(1)
\end{array}\right]=\underbrace{\left[\begin{array}{ccccc}
1 & 0 & \cdots & 0 & -t_{1} \\
0 & 1 & \cdots & 0 & -t_{2} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & 1 & -t_{n}
\end{array}\right]\left[\begin{array}{ccccc}
1 & 0 & \cdots & 0 & 0 \\
1 & 1 & \cdots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
1 & 1 & \cdots & 1 & 0 \\
1 & 1 & \cdots & 1 & 1
\end{array}\right]}_{=: \mathbf{A} \in \mathbb{R}^{n \times(n+1)}}\left[\begin{array}{c}
B\left(t_{1}\right) \\
B\left(t_{2}\right)-B\left(t_{1}\right) \\
\vdots \\
B\left(t_{n}\right)-B\left(t_{n-1}\right) \\
B(1)-B\left(t_{n}\right)
\end{array}\right]
$$

together with the fact that

$$
\left[\begin{array}{c}
B\left(t_{1}\right) \\
B\left(t_{2}\right)-B\left(t_{1}\right) \\
\vdots \\
B\left(t_{n}\right)-B\left(t_{n-1}\right) \\
B(1)-B\left(t_{n}\right)
\end{array}\right] \sim \bigotimes_{k=1}^{n+1} \mathrm{~N}_{1}\left(0, t_{k}-t_{k-1}\right) \stackrel{d}{=} \mathrm{N}_{n+1}\left(\mathbf{0}, \operatorname{diag}\left(t_{1}, t_{2}-t_{1}, \cdots, t_{n}-t_{n-1}, 1-t_{n}\right)\right),
$$

where $t_{0}:=0, t_{1}:=1, \mathbf{0} \in \mathbb{R}^{n+1}$ denotes the $(n+1)$-dimensional zero vector, and $\mathrm{N}_{d}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ refers to the d-dimensional normal distribution with mean vector $\boldsymbol{\mu} \in \mathbb{R}^{d}$ and covariance matrix $\boldsymbol{\Sigma} \in \mathbb{R}^{d \times d}$, we arrive at

$$
\left[\begin{array}{c}
B^{0}\left(t_{1}\right) \\
B^{0}\left(t_{2}\right) \\
\vdots \\
B^{0}\left(t_{n}\right)
\end{array}\right] \sim \mathrm{N}_{n}\left(\mathbf{0}, \mathbf{A} \cdot \operatorname{diag}\left(t_{1}, t_{2}-t_{1}, \cdots, t_{n}-t_{n-1}, 1-t_{n}\right) \cdot \mathbf{A}^{\top}\right)
$$

where $\mathbf{0} \in \mathbb{R}^{n}$ denotes the n-dimensional zero vector. By involving some straightforward calculations, we obtain

$$
\begin{equation*}
\boldsymbol{\Sigma}_{1}:=\mathbf{A} \cdot \operatorname{diag}\left(t_{1}, t_{2}-t_{1}, \cdots, t_{n}-t_{n-1}, 1-t_{n}\right) \cdot \mathbf{A}^{\top}=\left[t_{\min \{i, j\}}\left(1-t_{\max \{i, j\}}\right)\right]_{(i, j) \in[n] \times[n]} . \tag{4}
\end{equation*}
$$

Note that the equation (4) can be obtained directly from the equation 8.4 .5 in [1].
On the other hand, we can easily observe that $\left(X\left(t_{1}\right), X\left(t_{2}\right), \cdots, X\left(t_{n}\right)\right)$ follows an n-dimensional normal distribution with zero mean vector since

$$
\left[\begin{array}{c}
X\left(t_{1}\right) \\
X\left(t_{2}\right) \\
\vdots \\
X\left(t_{n}\right)
\end{array}\right]=\operatorname{diag}\left(1-t_{1}, 1-t_{2}, \cdots, 1-t_{n}\right) \underbrace{\left[\begin{array}{c}
B\left(\frac{t_{1}}{1-t_{1}}\right) \\
B\left(\frac{t_{2}}{1-t_{2}}\right) \\
\vdots \\
B\left(\frac{t_{n}}{1-t_{n}}\right)
\end{array}\right]}_{\text {normally distributed! }} \text {. }
$$

So it suffices to compute the covariance matrix of $\left(X\left(t_{1}\right), X\left(t_{2}\right), \cdots, X\left(t_{n}\right)\right)$, say $\boldsymbol{\Sigma}_{2} \in \mathbb{R}^{n \times n}$:

$$
\begin{aligned}
{\left[\boldsymbol{\Sigma}_{2}\right]_{i j} } & =\operatorname{Cov}\left[X\left(t_{i}\right), X\left(t_{j}\right)\right] \\
& =\mathbb{E}\left[\left(1-t_{i}\right)\left(1-t_{j}\right) \cdot B\left(\frac{t_{i}}{1-t_{i}}\right) B\left(\frac{t_{j}}{1-t_{j}}\right)\right] \\
& \stackrel{(c)}{=}\left(1-t_{i}\right)\left(1-t_{j}\right) \cdot \min \left\{\frac{t_{i}}{1-t_{i}}, \frac{t_{j}}{1-t_{j}}\right\} \\
& =t_{\min \{i, j\}}\left(1-t_{\max \{i, j\}}\right) \\
& =\left[\boldsymbol{\Sigma}_{1}\right]_{i j}
\end{aligned}
$$

for every $(i, j) \in[n] \times[n]$, where the step (c) follows from the Property (b^{\prime}) in pp .355 of [1], thereby we have $\boldsymbol{\Sigma}_{1}=\boldsymbol{\Sigma}_{2}$. This establishes our desired result (3) and this proves the claim that $\{X(t): t \in[0,1]\}$ has the same joint law as $\left\{B^{0}(t): t \in[0,1]\right\}$ under \mathbb{P}. Hence, $\{X(t): t \in[0,1]\}$ is a Brownian bridge defined on $(\Omega, \mathcal{F}, \mathbb{P})$ as desired.

References

[1] Rick Durrett. Probability: theory and examples, volume 49. Cambridge university press, 2019.

