MAS651 Theory of Stochastic Processes Homework \#10

20150597 Jeonghwan Lee
Department of Mathematical Sciences, KAIST

June 11, 2021

Throughout this homework, let \mathbb{Z}_{+}denote the set of all non-negative integers, \mathbb{R}_{+}be the set of all nonnegative real numbers, and $[a: b]:=\{a, a+1, \cdots, b-1, b\}$ for $a, b \in \mathbb{Z}$ with $a \leq b$. We also write $[n]:=[1: n]$ for $n \in \mathbb{N}$. Moreover, \biguplus denotes the disjoint union, and given a set A and $k \in \mathbb{Z}_{+},\binom{A}{k}:=\{B \subseteq A:|B|=k\}$.

Problem 1 (Exercise 8.1.1. in [1]).
Given any $-\infty<a<0 \leq b<+\infty$, let $T_{a, b}:=\inf \left\{t \in \mathbb{R}_{+}: B(t) \in \mathbb{R} \backslash(a, b)\right\}$, where $\left\{B(t): t \in \mathbb{R}_{+}\right\}$is a standard one-dimensional Brownian motion defined on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$. From Exercise 7.5.4 in [1], we know that

$$
\begin{equation*}
\mathbb{E}\left[T_{a, b}^{2}\right] \leq 4 \cdot \mathbb{E}\left[B\left(T_{a, b}\right)^{4}\right] \tag{1}
\end{equation*}
$$

We know that Exercise 7.5 .4 in [1] was one of the problems in Homework $\# 9$ of this course. Let (U, V) be an $((-\infty, 0) \times[0,+\infty), \mathcal{B}((-\infty, 0) \times[0,+\infty)))$-valued random variable on $(\Omega, \mathcal{F}, \mathbb{P})$, which is independent of $\left\{B(t): t \in \mathbb{R}_{+}\right\}$, and has the following distribution:

$$
\begin{equation*}
\mathbb{P}\{(U, V) \in A\}=\frac{1}{c} \iint_{A}(v-u) \mathrm{d} F(u) \mathrm{d} F(v), \forall A \in \mathcal{B}((-\infty, 0) \times[0,+\infty)) \tag{2}
\end{equation*}
$$

where $F(\cdot): \mathbb{R} \rightarrow[0,1]$ is the probability distribution function of the random variable X defined on $(\Omega, \mathcal{F}, \mathbb{P})$ such that $\mathbb{E}[X]=0$ and $\mathbb{E}\left[X^{2}\right]<+\infty$, and $c \in[0,+\infty)$ is the normalization constant given by

$$
c:=\int_{[0,+\infty)} v \mathrm{~d} F(v) \stackrel{(a)}{=}-\int_{(-\infty, 0)} u \mathrm{~d} F(u),
$$

where the step (a) follows from the condition $\mathbb{E}[X]=0$. At this point, we may assume that $\mathbb{E}\left[X^{2}\right]>0$ as otherwise trivial. For this case, we know that $c>0$ and one can check that the function

$$
A \in \mathcal{B}((-\infty, 0) \times[0,+\infty)) \mapsto \frac{1}{c} \iint_{A}(v-u) \mathrm{d} F(u) \mathrm{d} F(v) \in \mathbb{R}_{+}
$$

is a probability measure defined on $((-\infty, 0) \times[0,+\infty), \mathcal{B}((-\infty, 0) \times[0,+\infty)))$. We note that this proce-
dure guarantees the existence of a random variable (U, V) satisfying (2). To this end,

$$
\begin{aligned}
\iint_{(-\infty, 0) \times[0,+\infty)}(v-u) \mathrm{d} F(u) \mathrm{d} F(v) & =\int_{[0,+\infty)}[v \cdot \mathbb{P}\{X<0\}-\underbrace{\int_{(-\infty, 0)} u \mathrm{~d} F(u)}_{=c}] \mathrm{d} F(v) \\
& =\mathbb{P}\{X<0\} \underbrace{\int_{[0,+\infty)} v \mathrm{~d} F(v)}_{=c}+c \cdot \mathbb{P}\{X \geq 0\} \\
& =c \cdot \mathbb{P}\{X<0\}+c \cdot \mathbb{P}\{X \geq 0\} \\
& =c,
\end{aligned}
$$

and this establishes our claim. We have shown in the proof of Theorem 8.1.1 in [1] that for every bounded measurable function $\varphi(\cdot):(\mathbb{R}, \mathcal{B}(\mathbb{R})) \rightarrow(\mathbb{R}, \mathcal{B}(\mathbb{R}))$,

$$
\begin{equation*}
\int_{\mathbb{R}} \varphi(x) \mathrm{d} F(x)=\mathbb{E}[\varphi(X)]=\mathbb{E}_{(U, V)}\left[\int_{\{U, V\}} \varphi(x) \mu_{U, V}(\mathrm{~d} x)\right], \tag{3}
\end{equation*}
$$

where the probability measure $\mu_{u, v}$ on $\left(\{u, v\}, 2^{\{u, v\}}\right),-\infty<u<0 \leq v<+\infty$, is defined by

$$
\mu_{u, v}(\{u\})=\frac{v}{v-u} \quad \text { and } \quad \mu_{u, v}(\{v\})=\frac{-u}{v-u} .
$$

Note that for any $-\infty<u<0 \leq v<+\infty$, we see that

$$
\begin{aligned}
& \mathbb{P}\left\{B\left(T_{u, v}\right)=u\right\}=\mathbb{P}\left\{T_{u}<T_{v}\right\} \stackrel{(\text { b) }}{=} \frac{v}{v-u}=\mu_{u, v}(\{u\}) ; \\
& \mathbb{P}\left\{B\left(T_{u, v}\right)=v\right\}=\mathbb{P}\left\{T_{u}>T_{v}\right\} \stackrel{(\mathrm{c})}{=} \frac{-u}{v-u}=\mu_{u, v}(\{v\}),
\end{aligned}
$$

where the step (b) and the step (c) holds by Theorem 7.5.3 in [1] (we note that the case $-\infty<u<0<$ $v<+\infty$ makes use of Theorem 7.5.3 in [1], and the case $-\infty<u<0=v<+\infty$ is trivial). Therefore, $\mu_{u, v}(\cdot)$ is the probability distribution of $B\left(T_{u, v}\right)$ under \mathbb{P} for every $-\infty<u<0 \leq v<+\infty$. Thus for every bounded measurable function $\varphi(\cdot):(\mathbb{R}, \mathcal{B}(\mathbb{R})) \rightarrow(\mathbb{R}, \mathcal{B}(\mathbb{R}))$,

$$
\begin{aligned}
\mathbb{E}[\varphi(X)] & =\mathbb{E}\left[\mathbb{E}\left[\int_{\{U, V\}} \varphi(x) \mu_{U, V}(\mathrm{~d} x) \mid(U, V)\right]\right] \\
& =\mathbb{E}\left[\mathbb{E}\left[\varphi\left\{B\left(T_{U, V}\right)\right\} \mid(U, V)\right]\right] \\
& =\mathbb{E}\left[\varphi\left\{B\left(T_{U, V}\right)\right\}\right],
\end{aligned}
$$

thereby $X \stackrel{d}{=} B\left(T_{U, V}\right)$ under \mathbb{P}. Hence,

$$
\begin{aligned}
\mathbb{E}\left[T_{U, V}^{2}\right] & =\mathbb{E}\left[\mathbb{E}\left[T_{U, V}^{2} \mid(U, V)\right]\right] \\
& \stackrel{(\mathrm{d})}{\leq} \mathbb{E}\left[4 \cdot \mathbb{E}\left[B\left(T_{U, V}\right)^{4} \mid(U, V)\right]\right] \\
& =4 \cdot \mathbb{E}\left[B\left(T_{U, V}\right)^{4}\right] \\
& \stackrel{(\mathrm{e})}{\leq} 4 \cdot \mathbb{E}\left[X^{4}\right]
\end{aligned}
$$

where the step (d) follows from the inequality (1), and the step (e) is due to the fact $X \stackrel{d}{=} B\left(T_{U, V}\right)$ under \mathbb{P}. We finally note that $T_{U, V}$ is a stopping time with respect to the natural filtration $\left\{\mathcal{F}(t): t \in \mathbb{R}_{+}\right\}$generated by $\left\{B(t): t \in \mathbb{R}_{+}\right\}$, conditionally given $(U, V)=(u, v) \in(-\infty, 0) \times[0,+\infty)$.

Problem 2 (Exercise 8.1.2. in [1]).
Let X be a random variable defined on (Ω, \mathcal{F}) with $\mathbb{E}[X]=0$ and $\mathbb{E}\left[X^{2}\right]=\sigma^{2}<+\infty$, and $\left\{X_{n}\right\}_{n=1}^{\infty} \stackrel{\text { i.i.d. }}{\sim}$ X under \mathbb{P}. Let $S_{0}:=0$ and $S_{n}:=\sum_{k=1}^{n}$ for $n \in \mathbb{N}$. From this one-dimensional simple random walk $\left\{S_{n}\right\}_{n=0}^{\infty}$ defined on $(\Omega, \mathcal{F}, \mathbb{P})$, we consider the following continuous-time stochastic process $\left\{S(t): t \in \mathbb{R}_{+}\right\}$on (Ω, \mathcal{F}) by

$$
S(t):=\{1-(t-\lfloor t\rfloor)\} S_{\lfloor t\rfloor}+(t-\lfloor t\rfloor) S_{\lfloor t\rfloor+1}, \forall t \in \mathbb{R}_{+} .
$$

Given any $n \in \mathbb{N}$, let $\left\{\hat{S}_{n}(t): t \in \mathbb{R}_{+}\right\}$be a continuous-time stochastic process $\left\{S(t): t \in \mathbb{R}_{+}\right\}$defined on (Ω, \mathcal{F}) by

$$
\hat{S}_{n}(t):=\frac{S(n t)}{\sqrt{n}}, \forall t \in \mathbb{R}_{+} .
$$

The Donsker's invariance principle (Theorem 8.1.4 in [1]) implies

$$
\pi_{1}\left\{\hat{S}_{n}(\cdot)\right\} \xrightarrow{d} \sigma \cdot \pi_{1}\{B(\cdot)\} \quad \text { as } n \rightarrow \infty,
$$

where $\pi_{L}:(C([0,+\infty), \mathbb{R}), \mathcal{C}([0,+\infty), \mathbb{R})) \rightarrow(C([0, L], \mathbb{R}), \mathcal{C}([0, L], \mathbb{R}))$ is the cutting-off map defined by $\pi_{L}(f(\cdot)):=\left.f\right|_{[0, L]}$ for each $L \in \mathbb{R}_{+}$, and $B(\cdot):(\Omega, \mathcal{F}) \rightarrow(C([0,+\infty), \mathbb{R}), \mathcal{C}([0,+\infty), \mathbb{R}))$ is a map defined by

$$
B(\cdot)(\omega)(t):= \begin{cases}B_{t}(\omega) & \text { if } \omega \in \mathcal{B} \\ 0 & \text { otherwise }\end{cases}
$$

where $\left\{B(t): t \in \mathbb{R}_{+}\right\}$is a standard one-dimensional Brownian motion defined on $(\Omega, \mathcal{F}, \mathbb{P})$, and

$$
\mathcal{B}:=\left\{\omega \in \Omega: \text { the sample path of }\left\{B(t): t \in \mathbb{R}_{+}\right\} \text {is continuous everywhere. }\right\} \in \mathcal{F} .
$$

Now, it's time to solve the given problem. One can see that

$$
\begin{aligned}
R_{n} & :=1+\max \left\{S_{k}: k \in[0: n]\right\}-\min \left\{S_{k}: k \in[0: n]\right\} \\
& \stackrel{(\text { a) }}{=} 1+\max \{S(t): t \in[0, n]\}-\min \{S(t): t \in[0, n]\} \\
& =1+\max \{S(n t): t \in[0,1]\}-\min \{S(n t): t \in[0,1]\},
\end{aligned}
$$

where the step (a) follows from the fact that $\{S(t): t \in[0, n]\}$ attains its maximum and minimum at some integer values of $t \in[0, n]$, since the continuous-time stochastic process $\left\{S(t): t \in \mathbb{R}_{+}\right\}$is defined by interpolating the given random walk $\left\{S_{n}\right\}_{n=0}^{\infty}$ linearly. Thus, we have

$$
\begin{align*}
\frac{R_{n}}{\sigma \sqrt{n}} & =\frac{1}{\sigma \sqrt{n}}+\max \left\{\frac{S(n t)}{\sigma \sqrt{n}}: t \in[0,1]\right\}-\min \left\{\frac{S(n t)}{\sigma \sqrt{n}}: t \in[0,1]\right\} \tag{4}\\
& =\frac{1}{\sigma \sqrt{n}}+\max \left\{\sigma^{-1} \hat{S}_{n}(t): t \in[0,1]\right\}-\min \left\{\sigma^{-1} \hat{S}_{n}(t): t \in[0,1]\right\}
\end{align*}
$$

for every $n \in \mathbb{N}$. At this point, we define a functional $\varphi: C([0,1], \mathbb{R}) \rightarrow \mathbb{R}$ by

$$
\varphi(f(\cdot)):=\max \{f(t): t \in[0,1]\}-\min \{f(t): t \in[0,1]\}, \forall f(\cdot) \in C([0,1], \mathbb{R}) .
$$

We claim that the map $\varphi: C([0,1], \mathbb{R}) \rightarrow \mathbb{R}$ is continuous under the uniform convergence topology, i.e., the metric topology on $C([0,1], \mathbb{R})$ induced by the sup-norm. We recall that the sup-norm $\|\cdot\|_{\text {sup }}: C(X, \mathbb{R}) \rightarrow$ \mathbb{R}_{+}defined on the space of continuous functions from a compact topological space X to \mathbb{R} is defined by

$$
\|f\|_{\text {sup }}:=\sup \{|f(x)|: x \in X\}=\max \{|f(x)|: x \in X\}
$$

In order to prove this claim, given any $f(\cdot), g(\cdot) \in C([0,1], \mathbb{R})$, we may observe that

$$
f(t)=g(t)+\{f(t)-g(t)\} \leq g(t)+\|g-f\|_{\text {sup }} \leq \max \{g(t): t \in[0,1]\}+\|g-f\|_{\text {sup }}, \forall t \in[0,1]
$$

thereby we arrive at

$$
\begin{equation*}
\max \{f(t): t \in[0,1]\} \leq \max \{g(t): t \in[0,1]\}+\|g-f\|_{\text {sup }}, \forall t \in[0,1] . \tag{5}
\end{equation*}
$$

On the other hand, one can see that

$$
f(t)=g(t)+\{f(t)-g(t)\} \geq g(t)-\|g-f\|_{\text {sup }} \geq \min \{g(t): t \in[0,1]\}-\|g-f\|_{\text {sup }}, \forall t \in[0,1]
$$

thereby we reach

$$
\begin{equation*}
\min \{f(t): t \in[0,1]\} \geq \min \{g(t): t \in[0,1]\}-\|g-f\|_{\text {sup }}, \forall t \in[0,1] . \tag{6}
\end{equation*}
$$

Taking two pieces (5) and (6) collectively yields

$$
\begin{align*}
\varphi(f(\cdot)) & =\max \{f(t): t \in[0,1]\}-\min \{f(t): t \in[0,1]\} \\
& \leq \max \{g(t): t \in[0,1]\}-\min \{g(t): t \in[0,1]\}+2\|g-f\|_{\text {sup }} \tag{7}\\
& =\varphi(g(\cdot))+2\|g-f\|_{\text {sup }} .
\end{align*}
$$

By interchanging the roles of $f(\cdot)$ and $g(\cdot)$ in the inequality (7), we obtain

$$
\begin{equation*}
\varphi(g(\cdot)) \leq \varphi(f(\cdot))+2\|g-f\|_{\text {sup }} \tag{8}
\end{equation*}
$$

So combining two bounds (7) and (8) produces

$$
\begin{equation*}
|\varphi(g(\cdot))-\varphi(f(\cdot))| \leq 2\|g-f\|_{\text {sup }}, \forall f(\cdot), g(\cdot) \in C([0,1], \mathbb{R}) \tag{9}
\end{equation*}
$$

From the inequality (9), we see that the function $\varphi: C([0,1], \mathbb{R}) \rightarrow \mathbb{R}$ is Lipschitz continuous with Lipschitz constant 2. So in particular, the function $\varphi: C([0,1], \mathbb{R}) \rightarrow \mathbb{R}$ is continuous under the uniform convergence topology on $C([0,1], \mathbb{R})$, i.e., the metric topology on $C([0,1], \mathbb{R})$ induced by the sup-norm. Due to Theorem 8.1.5 in [1], a simple consequence of the Donsker's invariance principle (Theorem 8.1.4 in [1]) together with the continuous mapping theorem (Theorem 3.2.10 in [1]), we see from $\mathbb{P}\left\{\pi_{1}\{B(\cdot)\} \in \mathcal{D}(\varphi)\right\}=0$, where

$$
\mathcal{D}(\varphi):=\{f(\cdot) \in C([0,1], \mathbb{R}): \varphi: C([0,1], \mathbb{R}) \rightarrow \mathbb{R} \text { is not continuous at } f(\cdot)\}
$$

denotes the discontinuity set of $\varphi(\cdot)$, that

$$
\begin{equation*}
\varphi\left\{\pi_{1}\left(\frac{\hat{S}_{n}(\cdot)}{\sigma}\right)\right\} \xrightarrow{d} \varphi\left\{\pi_{1}(B(\cdot))\right\} \quad \text { as } n \rightarrow \infty . \tag{10}
\end{equation*}
$$

Here, we note that $\mathcal{D}(\varphi)=\varnothing$. Hence,

$$
\begin{aligned}
\frac{R_{n}}{\sqrt{n}} & =\sigma\left(\frac{R_{n}}{\sigma \sqrt{n}}-\frac{1}{\sigma \sqrt{n}}\right)+\frac{1}{\sqrt{n}} \\
& \stackrel{(\mathrm{~b})}{=} \sigma \cdot \varphi\left\{\pi_{1}\left(\frac{\hat{S}_{n}(\cdot)}{\sigma}\right)\right\}+\frac{1}{\sqrt{n}} \\
\stackrel{(\mathrm{c})}{\mathrm{d}} & \sigma \cdot\left\{\pi_{1}(B(\cdot))\right\} \\
& =\sigma(\max \{B(t): t \in[0,1]\}-\min \{B(t): t \in[0,1]\}),
\end{aligned}
$$

where the step (b) follows from (4), and the step (c) makes use of the result (10) together with the converging together lemma (Exercise 3.2.13 in [1]). This establishes our desired result!

References

[1] Rick Durrett. Probability: theory and examples, volume 49. Cambridge university press, 2019.

