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Throughout this homework, let Z+ denote the set of all non-negative integers, R+ be the set of all non-

negative real numbers, and [a : b] := {a, a+ 1, · · · , b− 1, b} for a, b ∈ Z with a ≤ b. We also write [n] := [1 : n]

for n ∈ N. Moreover,
⊎

denotes the disjoint union, and given a set A and k ∈ Z+,
(
A
k

)
:= {B ⊆ A : |B| = k}.

Problem 1 (Exercise 8.1.1. in [1]).

Given any −∞ < a < 0 ≤ b < +∞, let Ta,b := inf {t ∈ R+ : B(t) ∈ R \ (a, b)}, where {B(t) : t ∈ R+} is

a standard one-dimensional Brownian motion defined on a probability space (Ω,F ,P). From Exercise 7.5.4

in [1], we know that

E
[
T 2
a,b

]
≤ 4 · E

[
B (Ta,b)

4
]
. (1)

We know that Exercise 7.5.4 in [1] was one of the problems in Homework #9 of this course. Let (U, V ) be

an ((−∞, 0)× [0,+∞) ,B ((−∞, 0)× [0,+∞)))-valued random variable on (Ω,F ,P), which is independent

of {B(t) : t ∈ R+}, and has the following distribution:

P {(U, V ) ∈ A} =
1

c

∫∫
A

(v − u)dF (u)dF (v), ∀A ∈ B ((−∞, 0)× [0,+∞)) , (2)

where F (·) : R→ [0, 1] is the probability distribution function of the random variable X defined on (Ω,F ,P)

such that E[X] = 0 and E
[
X2
]
< +∞, and c ∈ [0,+∞) is the normalization constant given by

c :=

∫
[0,+∞)

vdF (v)
(a)
= −

∫
(−∞,0)

udF (u),

where the step (a) follows from the condition E[X] = 0. At this point, we may assume that E
[
X2
]
> 0 as

otherwise trivial. For this case, we know that c > 0 and one can check that the function

A ∈ B ((−∞, 0)× [0,+∞)) 7→ 1

c

∫∫
A

(v − u)dF (u)dF (v) ∈ R+

is a probability measure defined on ((−∞, 0)× [0,+∞) ,B ((−∞, 0)× [0,+∞))). We note that this proce-
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dure guarantees the existence of a random variable (U, V ) satisfying (2). To this end,

∫∫
(−∞,0)×[0,+∞)

(v − u)dF (u)dF (v) =

∫
[0,+∞)

v · P {X < 0}−
∫
(−∞,0)

udF (u)︸ ︷︷ ︸
= c

dF (v)

= P {X < 0}
∫
[0,+∞)

vdF (v)︸ ︷︷ ︸
= c

+c · P {X ≥ 0}

= c · P {X < 0}+ c · P {X ≥ 0}

= c,

and this establishes our claim. We have shown in the proof of Theorem 8.1.1 in [1] that for every bounded

measurable function ϕ(·) : (R,B(R))→ (R,B(R)),∫
R
ϕ(x)dF (x) = E [ϕ(X)] = E(U,V )

[∫
{U,V }

ϕ(x)µU,V (dx)

]
, (3)

where the probability measure µu,v on
(
{u, v} , 2{u,v}

)
, −∞ < u < 0 ≤ v < +∞, is defined by

µu,v ({u}) =
v

v − u
and µu,v ({v}) =

−u
v − u

.

Note that for any −∞ < u < 0 ≤ v < +∞, we see that

P {B (Tu,v) = u} = P {Tu < Tv}
(b)
=

v

v − u
= µu,v ({u}) ;

P {B (Tu,v) = v} = P {Tu > Tv}
(c)
=
−u
v − u

= µu,v ({v}) ,

where the step (b) and the step (c) holds by Theorem 7.5.3 in [1] (we note that the case −∞ < u < 0 <

v < +∞ makes use of Theorem 7.5.3 in [1], and the case −∞ < u < 0 = v < +∞ is trivial). Therefore,

µu,v(·) is the probability distribution of B (Tu,v) under P for every −∞ < u < 0 ≤ v < +∞. Thus for every

bounded measurable function ϕ(·) : (R,B(R))→ (R,B(R)),

E [ϕ(X)] = E

[
E

[∫
{U,V }

ϕ(x)µU,V (dx)

∣∣∣∣∣ (U, V )

]]
= E [E [ϕ {B (TU,V )}| (U, V )]]

= E [ϕ {B (TU,V )}] ,

thereby X
d
= B (TU,V ) under P. Hence,

E
[
T 2
U,V

]
= E

[
E
[
T 2
U,V

∣∣ (U, V )
]]

(d)

≤ E
[
4 · E

[
B (TU,V )4

∣∣∣ (U, V )
]]

= 4 · E
[
B (TU,V )4

]
(e)

≤ 4 · E
[
X4
]
,
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where the step (d) follows from the inequality (1), and the step (e) is due to the fact X
d
= B (TU,V ) under P.

We finally note that TU,V is a stopping time with respect to the natural filtration {F(t) : t ∈ R+} generated

by {B(t) : t ∈ R+}, conditionally given (U, V ) = (u, v) ∈ (−∞, 0)× [0,+∞).

Problem 2 (Exercise 8.1.2. in [1]).

Let X be a random variable defined on (Ω,F) with E[X] = 0 and E
[
X2
]

= σ2 < +∞, and {Xn}∞n=1
i.i.d.∼

X under P. Let S0 := 0 and Sn :=
∑n

k=1 for n ∈ N. From this one-dimensional simple random walk {Sn}∞n=0

defined on (Ω,F ,P), we consider the following continuous-time stochastic process {S(t) : t ∈ R+} on (Ω,F)

by

S(t) := {1− (t− btc)}Sbtc + (t− btc)Sbtc+1, ∀t ∈ R+.

Given any n ∈ N, let
{
Ŝn(t) : t ∈ R+

}
be a continuous-time stochastic process {S(t) : t ∈ R+} defined on

(Ω,F) by

Ŝn(t) :=
S(nt)√

n
, ∀t ∈ R+.

The Donsker’s invariance principle (Theorem 8.1.4 in [1]) implies

π1

{
Ŝn(·)

}
d−→ σ · π1 {B(·)} as n→∞,

where πL : (C ([0,+∞) ,R) , C ([0,+∞) ,R))→ (C ([0, L] ,R) , C ([0, L] ,R)) is the cutting-off map defined by

πL (f(·)) := f |[0,L] for each L ∈ R+, and B(·) : (Ω,F) → (C ([0,+∞) ,R) , C ([0,+∞) ,R)) is a map defined

by

B(·)(ω)(t) :=

Bt(ω) if ω ∈ B;

0 otherwise,

where {B(t) : t ∈ R+} is a standard one-dimensional Brownian motion defined on (Ω,F ,P), and

B := {ω ∈ Ω : the sample path of {B(t) : t ∈ R+} is continuous everywhere.} ∈ F .

Now, it’s time to solve the given problem. One can see that

Rn := 1 + max {Sk : k ∈ [0 : n]} −min {Sk : k ∈ [0 : n]}
(a)
= 1 + max {S(t) : t ∈ [0, n]} −min {S(t) : t ∈ [0, n]}

= 1 + max {S(nt) : t ∈ [0, 1]} −min {S(nt) : t ∈ [0, 1]} ,

where the step (a) follows from the fact that {S(t) : t ∈ [0, n]} attains its maximum and minimum at some

integer values of t ∈ [0, n], since the continuous-time stochastic process {S(t) : t ∈ R+} is defined by inter-

polating the given random walk {Sn}∞n=0 linearly. Thus, we have

Rn

σ
√
n

=
1

σ
√
n

+ max

{
S(nt)

σ
√
n

: t ∈ [0, 1]

}
−min

{
S(nt)

σ
√
n

: t ∈ [0, 1]

}
=

1

σ
√
n

+ max
{
σ−1Ŝn(t) : t ∈ [0, 1]

}
−min

{
σ−1Ŝn(t) : t ∈ [0, 1]

} (4)

for every n ∈ N. At this point, we define a functional ϕ : C ([0, 1] ,R)→ R by

ϕ (f(·)) := max {f(t) : t ∈ [0, 1]} −min {f(t) : t ∈ [0, 1]} , ∀f(·) ∈ C ([0, 1] ,R) .
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We claim that the map ϕ : C ([0, 1] ,R)→ R is continuous under the uniform convergence topology, i.e., the

metric topology on C ([0, 1] ,R) induced by the sup-norm. We recall that the sup-norm ‖ · ‖sup : C (X,R)→
R+ defined on the space of continuous functions from a compact topological space X to R is defined by

‖f‖sup := sup {|f(x)| : x ∈ X} = max {|f(x)| : x ∈ X} .

In order to prove this claim, given any f(·), g(·) ∈ C ([0, 1] ,R), we may observe that

f(t) = g(t) + {f(t)− g(t)} ≤ g(t) + ‖g − f‖sup ≤ max {g(t) : t ∈ [0, 1]}+ ‖g − f‖sup , ∀t ∈ [0, 1],

thereby we arrive at

max {f(t) : t ∈ [0, 1]} ≤ max {g(t) : t ∈ [0, 1]}+ ‖g − f‖sup , ∀t ∈ [0, 1]. (5)

On the other hand, one can see that

f(t) = g(t) + {f(t)− g(t)} ≥ g(t)− ‖g − f‖sup ≥ min {g(t) : t ∈ [0, 1]} − ‖g − f‖sup , ∀t ∈ [0, 1],

thereby we reach

min {f(t) : t ∈ [0, 1]} ≥ min {g(t) : t ∈ [0, 1]} − ‖g − f‖sup , ∀t ∈ [0, 1]. (6)

Taking two pieces (5) and (6) collectively yields

ϕ (f(·)) = max {f(t) : t ∈ [0, 1]} −min {f(t) : t ∈ [0, 1]}

≤ max {g(t) : t ∈ [0, 1]} −min {g(t) : t ∈ [0, 1]}+ 2 ‖g − f‖sup
= ϕ (g(·)) + 2 ‖g − f‖sup .

(7)

By interchanging the roles of f(·) and g(·) in the inequality (7), we obtain

ϕ (g(·)) ≤ ϕ (f(·)) + 2 ‖g − f‖sup . (8)

So combining two bounds (7) and (8) produces

|ϕ (g(·))− ϕ (f(·))| ≤ 2 ‖g − f‖sup , ∀f(·), g(·) ∈ C ([0, 1] ,R) . (9)

From the inequality (9), we see that the function ϕ : C ([0, 1] ,R)→ R is Lipschitz continuous with Lipschitz

constant 2. So in particular, the function ϕ : C ([0, 1] ,R)→ R is continuous under the uniform convergence

topology on C ([0, 1] ,R), i.e., the metric topology on C ([0, 1] ,R) induced by the sup-norm. Due to Theorem

8.1.5 in [1], a simple consequence of the Donsker’s invariance principle (Theorem 8.1.4 in [1]) together with

the continuous mapping theorem (Theorem 3.2.10 in [1]), we see from P {π1 {B(·)} ∈ D(ϕ)} = 0, where

D(ϕ) := {f(·) ∈ C ([0, 1] ,R) : ϕ : C ([0, 1] ,R)→ R is not continuous at f(·)}

denotes the discontinuity set of ϕ(·), that

ϕ

{
π1

(
Ŝn(·)
σ

)}
d−→ ϕ {π1 (B(·))} as n→∞. (10)
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Here, we note that D(ϕ) = ∅. Hence,

Rn√
n

= σ

(
Rn

σ
√
n
− 1

σ
√
n

)
+

1√
n

(b)
= σ · ϕ

{
π1

(
Ŝn(·)
σ

)}
+

1√
n

(c)−→
d

σ · {π1 (B(·))}

= σ (max {B(t) : t ∈ [0, 1]} −min {B(t) : t ∈ [0, 1]}) ,

where the step (b) follows from (4), and the step (c) makes use of the result (10) together with the converging

together lemma (Exercise 3.2.13 in [1]). This establishes our desired result!
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