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Throughout this homework, let Z, denote the set of all non-negative integers, Ry be the set of all non-
negative real numbers, and [a : b] ;== {a,a+1,--- ;b —1,b} fora,b € Z with a < b. We also write [n] := [1 : n]
for n € N. Moreover, |4 denotes the disjoint union, and given a set A and k € Z, (?) ={BC A:|B|=k}.

Problem 1 (Ezercise 8.1.1. in [1]).
Given any —oo < a <0 <b < 400, let T,y :=inf {t € R} : B(t) € R\ (a,b)}, where {B(t) : t € Ry} is
a standard one-dimensional Brownian motion defined on a probability space (2, F,P). From FEzercise 7.5.4

in [1], we know that
E[72,) <4-E |B(To)]. (1)

We know that Ezercise 7.5.4 in [1] was one of the problems in Homework #9 of this course. Let (U, V') be
an ((—o0,0) x [0,400), B ((—00,0) x [0, +00)))-valued random variable on (€2, F,P), which is independent
of {B(t) : t € Ry}, and has the following distribution:

P{(U,V) € A} = i//A(v — w)dF(u)dF(v), YA € B((—00,0) x [0, +00)) , )

where F'(-) : R — [0, 1] is the probability distribution function of the random variable X defined on (92, F,P)
such that E[X] =0 and E [X 2] < +00, and ¢ € [0,400) is the normalization constant given by

c:= / vdF(v) ® —/ udF(u),
[0,+00) (—00,0)

where the step (a) follows from the condition E[X] = 0. At this point, we may assume that E [X?] > 0 as

otherwise trivial. For this case, we know that ¢ > 0 and one can check that the function
1
A€ B((~00,0) x [0, +00)) > - // (v — w)dF(uw)dF(v) € R,
A

is a probability measure defined on ((—o0,0) x [0,4+00), B ((—00,0) x [0,400))). We note that this proce-



dure guarantees the existence of a random variable (U, V') satisfying (2). To this end,

/ /(_OO,O)X[O#OO)@—U)dF(u)dF(v) = /[0 . v-P{X <0} — /( o) udF(u) | dF (v)

= C

=P{X <0} vdF(v) +c-P{X > 0}
[0,4-00)

=c
—¢-P{X <0} +c-P{X >0}
:C’

and this establishes our claim. We have shown in the proof of Theorem 8.1.1 in [!] that for every bounded
measurable function ¢(-) : (R, B(R)) — (R, B(R)),

| @ldF(@) = E[p(X)] = By, [ | el <dx>] , 3)
R {U,V}
where the probability measure pi,,, on ({u, v}, 2{“’”}), —00 < u <0< v < +00, is defined by
v —u
u,v = d U, = .

e ({0} = " and g (f0}) =

Note that for any —oo < u < 0 < v < +00, we see that
(b) v
P{B (Tuw) =u} =P{Tu <T,} = v—u tuw ({u});

—Uu

P{B (Tuw) = v} =P{Ty > T} © v—u tuw ({0})

where the step (b) and the step (c) holds by Theorem 7.5.3 in [l] (we note that the case —oo < u < 0 <
v < 400 makes use of Theorem 7.5.8 in [1], and the case —oco < u < 0 = v < 400 is trivial). Therefore,
Huw(+) is the probability distribution of B (T, ,) under P for every —oo < u < 0 < v < +00. Thus for every
bounded measurable function ¢(-) : (R, B(R)) — (R, B(R)),

Elp(X)] =E

E (U, V)

/ o(x)pu,y (dz)
{U,v}

E[E[¢{B (Tyv)} (U,V)]]
=E[p{B(Tuv)},

thereby X ‘B (Ty,v) under P. Hence,
E[T¢v] =E[E[Tqy| (U, V)]]
(d)
<E[+-E[BT)| V)]

=4-E [B (TU,V)ﬂ



where the step (d) follows from the inequality (1), and the step (e) is due to the fact X <p (Ty,v) under P.
We finally note that Ty is a stopping time with respect to the natural filtration {F(¢) : t € R} } generated
by {B(t) : t € R4}, conditionally given (U, V) = (u,v) € (—00,0) x [0, +00).

Problem 2 (Ezercise 8.1.2. in [1]).
Let X be a random variable defined on (2, ) with E[X] = 0 and E [X?] = 62 < +00, and {X,,};~, iid.
X under P. Let Sy :=0and S, :== Y, for n € N. From this one-dimensional simple random walk {S, },~,
defined on (€2, F,P), we consider the following continuous-time stochastic process {S(t) : t € Ry} on (2, F)
by
S)=={1—(—[t)} S + (t— [t]) Siey41, VE € Ry

Given any n € N, let {S‘n(t) e R+} be a continuous-time stochastic process {S(t) : ¢t € Ry} defined on

(2, F) by -
A S(nt
Sult) = =7

The Donsker’s invariance principle (Theorem 8.1.4 in [1]) implies

, Vt e R,.

m {Sn(-)} Lo m {B()} asn — oo,

where 7, : (C ([0, 400),R),C([0,+),R)) — (C ([0, L],R),C([0,L],R)) is the cutting-off map defined by
7L (f()) = fljo,) for each L € Ry, and B(:) : (2, F) — (C ([0, +00),R),C ([0, +00),R)) is a map defined
by
Bi(w) ifweB;
B()(w)(t) :=

0 otherwise,

where {B(t) : t € Ry} is a standard one-dimensional Brownian motion defined on (2, F,P), and
B:={w e Q: the sample path of {B(t):¢ € Ry} is continuous everywhere.} € F.

Now, it’s time to solve the given problem. One can see that

R, :=1+max{Sk:k€[0:n]} —min{St:ke[0:n]}

@1 max {S(t) : ¢ € [0,n]} — min {S(t) : t € [0,n]}

=14+ max{S(nt):t €[0,1]} — min{S(nt) : t € [0,1]},
where the step (a) follows from the fact that {S(¢) : t € [0,n]} attains its maximum and minimum at some

integer values of ¢ € [0, n], since the continuous-time stochastic process {S(t) : t € Ry} is defined by inter-

polating the given random walk {S,} 7, linearly. Thus, we have

B L + max M:te[o,l] — min Mite[o’l]
o\/n a\l/ﬁ { G\/? } { av/n ) } (4)
= m + max {aflSn(t) :te|o, 1]} — min {oflSn(t) 1t e|o, 1]}

for every n € N. At this point, we define a functional ¢ : C'([0,1],R) — R by

@ (f() == max {f(t) : t € [0, 1]} —min{f(#) : £ € [0, 1]}, Vf(-) € C([0,1],R).



We claim that the map ¢ : C'([0,1],R) — R is continuous under the uniform convergence topology, i.e., the
metric topology on C ([0, 1],R) induced by the sup-norm. We recall that the sup-norm || - ||sup : C (X,R) —

R, defined on the space of continuous functions from a compact topological space X to R is defined by
[fllsup := sup {[f(2)] : 2 € X} = max {|f(z)] : © € X} .
In order to prove this claim, given any f(-),g(-) € C (][0, 1],R), we may observe that
1) = gO) + {F(0) — 90} < g(6) + g — Flly < max {g(t) : £ € [0,1]} + llg — Fllop - Ve € 0, 1],
thereby we arrive at
max {£(t) : ¢ € [0,1]} < max {g(t) : t € [0, 1]} + llg = Fllp» ¥t € [0,1]. (5)
On the other hand, one can see that
f)=g&) +{f(t) —9()} = g(t) = llg = fllsup = min{g(t) : £ € [0,1]} = llg = fllgup - VE € [0,1],
thereby we reach
min {f(#) : ¢ € [0,1]} > min{g(¢) : ¢ € [0,1]} = [lg = fllqup» V£ € [0, 1]. (6)
Taking two pieces (5) and (6) collectively yields

@ (f()) =max {f(t) : t € [0,1]} —min {f(t) : t € 0,1]}
< max {g(t) : t € [0,1]} —min{g(t) : t € [0, 1]} +2lg — flloyp (7)
=¢(9() +2lg = fllsup -

By interchanging the roles of f(-) and ¢(-) in the inequality (7), we obtain
v (9() <o (fFO) +2l9 = Fllsup - (8)

So combining two bounds (7) and (8) produces

0 (9() = (FONI < 2Mlg = fllswp» V()5 9() € C([0,1],R). (9)

From the inequality (9), we see that the function ¢ : C' ([0,1],R) — R is Lipschitz continuous with Lipschitz
constant 2. So in particular, the function ¢ : C ([0,1],R) — R is continuous under the uniform convergence
topology on C ([0, 1], R), i.e., the metric topology on C' ([0, 1], R) induced by the sup-norm. Due to Theorem
8.1.5 in [1], a simple consequence of the Donsker’s invariance principle (Theorem 8.1.4 in [1]) together with

the continuous mapping theorem (Theorem 3.2.10 in [1]), we see from P {m; {B(-)} € D(¢)} = 0, where
D(e) :={f(-) e C([0,1],R) : ¢ : C([0,1] ,R) — R is not continuous at f(-)}

denotes the discontinuity set of ¢(-), that
S (-
go{m ( ;)>} i)cp{m (B(+))} asn— oo. (10)

4




Here, we note that D(¢) = @. Hence,

o {m (B())

= o (max{B(t) : t € [0,1]} — min {B(¢) : t € [0,1]}),

where the step (b) follows from (4), and the step (c) makes use of the result (10) together with the converging

together lemma (Ezercise 3.2.13 in [1]). This establishes our desired result!
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