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Throughout this homework, let Z denote the set of all non-negative integers, and [a : b] := {a,a + 1,--- ;b — 1, b}
for a,b € Z with a < b. We also write [n] := [1 : n] for n € N. Moreover, | denotes the disjoint union, and
given a set A and k € Z, (’2) :={B C A:|B| = k}. For instance, for N € N and i € [0 : N], ([];7]) denotes
the set of all subsets of [N] of size i.

Problem 1 (Ezercise 5.1.1. in [1]).
Given a time step n € Z., we compute the conditional probability P{X,,+1 = j| X, =i, Xp—1 = ip_1, -+, X0 = i0}
for ig, i1, yin—1,%,5 € S:=[0: N]. We note that

|{§17£27' o 7§7’L}‘ = XTL lf §n+1 S {517627' o 7571}7
{&1,&2, -, &} +1= X, +1 otherwise.

Xn—H = |{£17§2?' s 7£n+1}‘ = (1)

So, IP){)(n—‘,-l :j‘Xn:iaXn—l = ln—1,""" 7X0:i0} :O:P{Xn-l—l :j‘Xn:Z} for all j ES\{ZaZ+1}



Now, we first consider the case ¢ < N. Then, we have

P{Xp41 =i+ 11X, =4, Xp-1 =in_1,-, X0 =1ip}
- P{§n+1 = S\{gl’ ’5"}‘Xn = iaXn—l :in—la"' 7X0 :’iO}
DY Pl €S\T{E &} = TIXn =i, Xt = dnoay -, Xo = i}
re(")

= Z P{&1 €S\T[{&, -6 =T, X0 =0, Xpn1 =ip-1,--- , Xo =10}
re()

P{{gl) afn} :T|Xn :/leanl :infla"' 7XO :ZO}
b . . .
QS P{G € S\TYP{{€1, - &n} = TIXn = i, Xt = in1, -+ , Xo = o}

Te(N) —Noi (2)
© N —i
N

Te(")
9 S B en € S\T| €1 ) = T Xy = JB{{€1. 60} = T, = i}

re()

O B g €5\ {€n,- - 160} [Xn = i)
= P{Xn—l-l :Z+1‘Xn:7’}7

where the step (a) follows from the relation

{€n+l € S\{gly 7£n}7Xn = Z.vanl = 7:77,717"' 7X0 :ZO}
= H—J {£n+1€S\T’{£1""75”}2T,Xn:iaanl:infla"',X0:i0}7
Te(")

the step (b) and the step (e) is due to the independence between &,,11 and the o-field FSi=o (&1,&2,-+ ,&n)
together with the fact that X1, Xs,--- , X, are Fs-measurable, the step (c) holds since &, 11 ~ Unif ([N])

and

{XOZZ'O”"7Xn—1:in—17Xn:i}: L"__J {X0:i07"')Xn—lzin—th:i){glv'”aé’n}:T})
re(")

the step (d) is owing to the relation

re(")

together with the assumption &,4+1 ~ Unif ([N]), and finally the step (f) comes from the relation

{€n+1 ES\{€1,"' 7£n}aXn:i}: Lﬂ {fnJrl GS\Tv{Sla"' 7§n}:TaXn:i}'

re(")



As an immediate consequence, one has

IP){)(n—‘,-l = Z‘Xn = ia Xn—l = 7;n—l, T 7X0 = iO}

L P (X =i Xy =4, Xy = in1, - Xo = i0}

O P Xy =i 11X = i) 3)

~

O p (X, = i X, = i}
G, N-i_i
N N N’

where the step (g) and (i) follows from the fact that X,,+1 € {i,7 4+ 1} given that X,, = i, and the step (h)

and (j) comes from the computation (2). Hence, we eventually obtain

NF if =i+ 1;
P{Xn—i—l:]‘Xn:ZaXn—l:Zn—l, 7X0:ZO}:P{Xn+1:]‘Xn:Z}: % lf]:Z, (4)
0 otherwise,
when ¢ < N.
For the remaining case ¢ = N, it’s clear that
. : : . 1 ifj=N;
]P){Xn—‘rl :]|Xn =N, Xpn-1=1p-1,,Xo :ZO} :P{Xn—‘rl :]|Xn = N} = (5)

0 otherwise.

In particular, we can see from (4) and (5) that
P{XnJrl = ]|Xn =1, Xp-1=1Ipn-1,",X0= 'LO} = ]P){Xn+1 = ]‘Xn = Z}

for all ig,- -+ ,in—1,7,j € S, thereby the S-valued stochastic process {X,},-, is a Markov chain according
to the definition of Markov chains with countable state space in Section 5.1 of [1]. Finally, its transition

probability p: S x S — [0, 1] is obtained immediately from (4) and (5) as

+  ifj=1
p(i,j) = P{Xnt1 = j|Xp =i} = ¢ V=t if j=i+1and i < N;
0 otherwise.

Problem 2 (Ezercise 5.1.2. in [1]).

Assume on the contrary that {X,,} >, is a Markov chain with the countable state space S := Z. According
to the definition of Markov chains with countable state space in Section 5.1 in [1], {X,,},2, obeys the Markov
property for every time step n € Z:

P{Xn—i—l = j’Xn = Z'an—l = in—h T 7X0 = Z0} = ]P){Xn—i—l = ]‘Xn = Z} (6)

forallig, - ,in—1,1,7 € S. In particular, the value of the probability P {X,,11 = j| X, =4, X1 = in—1, -+, Xo =0}
should be irrelevant of the path of past states (ig, i1, ,in—1) € S™. Now, we consider the fourth time step,

i.e., n = 4. One can consider the following two paths of the stochastic process {X,},~, between the times



0 and 4: (Xo, X1, X2, X3, X4) = (0,1,1,1,2) and (Xo, X1, X2, X3, X4) = (0,0,0,1,2). Due to the Markov
property (6), we have
P{X,=2|X5=1,X0=1,X; =1,X0=0} =P{X, =2|X3 =1} )
=P{X;=2|X3=1,X2=0,X; =0,X9=0}.

1. We can easily see that (X, X1, X2, X3, X4) = (0,1,1,1,2) ifand only if (&1, &2, &3,&4) = (+1, —1,+1,+1).
On the other hand, (Xy, X1, X2, X3) = (0,1,1,1) if and only if (£1,£2) = (+1,—1) and &3 can attain
any value in {—1,+1}. Therefore, we conclude that

{(X07X17 X27X37 X4) = (07 17 17 17 2)} = {(517527&’)754) = (+17 _17 +17 +1)} ;
{(X07X17X27X3) - (07 17 17 1)} = {(61752) == <+17 _1)}7
thereby P{(XOuX17X27X37X4) = (07 17 17 172)} = (%)4 and P{(X07X17X27X3) = (07 17 1) 1)} = (%)2

Hence, we obtain

1\4
5 1
IP’{X4:2\X3:1,X2:1,X1:1,X0:0}:(f)2:4. (8)
(2)
2. Tt’s clear that (Xo, X1, X2, X3, X4) = (0,0,0,1,2) if and only if (&1,&2,&3,&) = (—1,+1,+1,4+1), and
(Xo, X1, X9, X3) =(0,0,0,1) if and only if (£1,&2,&3) = (—1,+1,41). Thus, we deduce that

{(Xo, X1, X2, X3, X4) = (0,0,0,1,2)} = {(£1,62,83,84) = (=1, +1,+1, +1)};
{(XUaXl,X2aX3) = (0,0,0, 1)} = {(51a£23£3) = (_17+1a+1)}7

thereby P {(Xo, X1, X2, X3, X4) = (0,0,0,1,2)} = (1)* and P{(Xo, X1, Xa, X3) = (0,0,0, 1)} = (1)°.

So, one has

1\4
5 1
IP’{X4:2\X3:1,X2:O,X1:O,X0:0}:(f)?):? (9)
(2)
Combining the above two straightforward computations, we can see that the equation (7) does not hold,

which gives a contradiction to our initial assumption. Hence, the stochastic process { X, } -, is not a Markov

chain.

Problem 3 (Ezercise 5.1.5. in [1]: Bernoulli-Laplace model of a diffusion).

Let X,, denote the number of black balls in the left urn at the n-th time step. Let us take a closer look
at all possible outcomes of X, 11 given that X,, = i, where i € S := [0 : b]. If 0 < i < b, there are three
possible outcomes for X, 11, X,41 € {i — 1,7,7 + 1}, with the corresponding choice of balls from each urn

at the (n + 1)-th time step, and the choices can be described as follows:
Xnt1 =1+ 1< We pick a white ball in the left urn, and a black ball in the right urn.
Xn+1 = ¢ < We pick balls of the same color in each urn. (10)
Xnt+1 =1 — 1< We pick a black ball in the left urn, and a white ball in the right urn.
If ¢ = 0, there are two possible outcomes for X, 11, X,+1 € {0,1}, with the corresponding choice of balls

from each urn at the (n 4 1)-th time step, and the choices can be described as follows:

Xnt+1 =1 < We pick a black ball in the right urn.

(11)

Xn+1 = 0 < We pick a white ball in the right urn.



Finally, if ¢ = b, there are also two possible outcomes for X,,+1, X, 41 € {b — 1,b}, with the corresponding
choice of balls from each urn at the (n + 1)-th time step, and the choices can be described as follows:
Xn+1 = b < We pick a white ball in the left urn.

(12)
Xn+1 =b— 1< We pick a black ball in the left urn.

o)

Before we compute the transition probability p : S x S — [0, 1] of the S-valued Markov chain {X,},~,
we note that {X,},7 is indeed a Markov chain since the value of X,,1; is determined solely based on the
value of X, and the choice of balls from each urn at the (n + 1)-th time step. This means that the past
history between the times 0 and n — 1 has no effect on the value of X, 11, thereby the stochastic process
{Xn},2, satisfies the Markov property. According to the definition of Markov chains with countable state

space in Section 5.1 in [1], it is a Markov chain with countable state space. Now, we compute the transition

probability of {X,,},~ . At this point, we note that given X,, = 1,

(the probability to choose a black ball in the left urn at the (n 4 1)-th time step.) = i;
m
(the probability to choose a white ball in the left urn at the (n + 1)-th time step.) =1 — i;
m
. 13)
. (
(the probability to choose a black ball in the right urn at the (n + 1)-th time step.) = Z;
m
b i
(the probability to choose a white ball in the right urn at the (n + 1)-th time step.) =1 — g
1. If 0 < i < b, then we can see from (10) and (13) that
(.
bei(1— 1) if j=i+1;
i b—i i b—i\ e .
. , , =t (1= =) (1= 22) if j =4;
pli,j) =P{Xnp1 = j|Xp =i} =¢ ™ ™ b_.( w) (=5 L (14)
w (1= 53) ifj=i—1;
0 otherwise.
2. If i = 0, then we can deduce from (11) and (13) that
1-2 ifj=0;
p(O,j) = P{Xn—i-l = ]‘Xn = 0} = % ifj =1; (15)
0 otherwise.
3. If i = b, then we can conclude from (12) and (13) that
1— 2 if j =0
p(bvj):P{XnJrl:ﬂXn:b}: % ifj=0b0-1; (16)
0 otherwise.

Combining all of the above computations (14)—(16) provides the following succinct form of the transition



probability p : S x S — [0, 1] of the Markov chain {X,,}>° ;: for any (i,j) € S x S,

%( %) ifj=i4+1 and i < b;
N R T
pi,j)y=4™ ™ "

%( %) if j=4i—1andi>0;

0 otherwise.

Problem 4 (Ezercise 5.1.6. in [1]).

To begin with, we use the symbol © instead of 6. Then, we have mutually independent and identically
distributed with uniform distribution over (0,1), © and {U, : n € N}. Also, X; == +1if U; < ©; X, := —1
otherwise, S, := Y ;" ; X; for n € N, and Sy := 0.

Now, we compute the conditional probability P{ X,+; = 1| X3, -+, X,}. The joint probability density
function of the (n + 1)-dimensional random vector (©,Uy,--- ,Uy,), fn : R"! — [0, 4+00), is given by

fn(eaulv"'7 _]1(01 [H]l[)l) ul]a (Haula"')un)ERn+1a

from the independence of {©, Uy, --- ,U,}. We can easily observe that X; = z; if and only if sign (0 — U;) =
x; for z; € {—1,+1}, where sign(x) := +1 if > 0, and sign(x) := —1 otherwise. Then, we have

P{X1 =21, , Xy =2, =P{sign(©®@ —-Uy) =21, ,sign (0 - Uy,) = x,}

= dfduq ---d
/{(G,ul,-u un)€(0,1)"F1: sign(0—u;)=x;, Vie[n}}

)

1
:/ / duy - -~ duy, | d6
0 Q(z1, ,2n;0)

1
:/ M {Q (1, s 0)} 6,
0

(17)

where Q (z1, -+ ,xp;0) := {(u1, -+ ,u,) € (0,1)" : sign (6 — u;) = z;, Vi € [n]} C (0,1)". Here, A, (-) refers

to the standard Lebesgue measure on R™. For i € [n], let

0,0] if x; =+1;
Z(xzi;0) = (0.
(0,1) otherwise.

Then, it’s clear that Q (21, -+ ,2,;0) = [[;= Z(x;;0), thereby

M AQ (21, 203 0)} = H)\l (2450
—H( o 1*;”) a9

n+ZI 1% n=Yit) @
2

(1-0)

=0



Putting (18) into (17) yields

n+zl i nle-q’: x;
P{X1:$1,“‘, — :/ 17 _9)421 10
_B (n+z T +1’n—%f_1mi +1>
. o 19
T <n+z2i=1 x4 + 1) T (n 221:1 T + 1) ( )
N L(n+2)
1 n+Yy i T n— T
= T = 1) | ————=——+1
(n+1)! < 2 > )
where B(-,-) : (0,400) x (0, 4+00) — (0, 4+00) denotes the beta function defined by
1
B(a, 8) :—/ 011 — 9)P1ds.
0
It is well-known that B(«, ) = ) ()) for o, f > 0, where I'(+) : (0, +00) — (0, 4+00) is the gamma function.
Therefore, we deduce from (19) that for any z1,x9, -+ ,xp41 € {—1,+1},
P{Xl =1, ,Xp = xnaXn—i-l = xn-i—l}
P{X = X, = oo X, = -
R 1+ e e
- (n-41-2)!F (n—gsn + 1+962n+1 + 1) T (n—zsn + 1*53271—&-1 + 1)
1 " —sn
Gl (P )T (A + 1)
) . _ (20)
_ §+2(TiQ) if o1 =1,
% % otherwise.
1 i Tt (i Ti)
2 2n+2)

where s, := " | z;. In particular, we have the desired computation
P{Xps1 =1 X X}—1+ ! > X
n+l — ny y A1y — 2 2(n+2) = (R

Finally, let’s prove that the Z-valued stochastic process {S,},— is a temporally inhomogeneous Markov

chain. For every (s1,s2, -+ ,8,41) € Z"1, we have

P{Sn—i-l = Sn—Q—l‘S’rL = Sp, ’Sl :317S0 :0} :P{Xn—i-l = Sn+1 _5n|Xn = 8np — Spn—1,""" 7X1 = 51}

@ 1 Sn+1 — Sn) Sn
{2 + (;(n—l—Q))} Ty_141) (Snt1 = 8n),

(21)



where the step (a) comes from (20). Hence, we obtain

]P){Sn—H = Sn—l—l’Sn = Sn}
= Z P{Snt1=8n+1|Sn = spn, -, 51 = 81,8 =0} P{So = 0,51 = 81, , Spn—1 = 8p—1] Sn = sn}

(51, ,8n—1)€Z" 1

1 Sn+l — Sn) Sn
= Z {2+(;(1n+2))}]l{1,+1} (sn+1 —8n) P{S0 = 0,51 = s1,-++ , Sn—1 = 8p—1| Sn = sn}
(81, y8p—1)€Z"—1

-
independent of (s1,,5n—1)

1 (3n+1 - Sn) Sn
- {2 * 2(n+2)} 1141 (Sn41 = 5n)

=P{Sh+1 = spnt1|Sn = sn, -+, 51 = 51,5 =0},

thereby {S, },—, is a Z-valued Markov chain, and its transition probability at the n-th time step is given by

1 i ep - . .

3t amry Hi=it1;
pu(t,5) =0 § = gy Hi=i-1;

0 otherwise.

Since py(+,-) : Z x Z — [0, 1] is not constant of n € Z, we can conclude that the Markov chain {S,} 7, is

temporally inhomogeneous.
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