MAS651 Theory of Stochastic Processes Homework \#1

20150597 Jeonghwan Lee

Department of Mathematical Sciences, KAIST

March 9, 2021

Throughout this homework, let \mathbb{Z}_{+}denote the set of all non-negative integers, and $[a: b]:=\{a, a+1, \cdots, b-1, b\}$ for $a, b \in \mathbb{Z}$ with $a \leq b$. We also write $[n]:=[1: n]$ for $n \in \mathbb{N}$. Moreover, \biguplus denotes the disjoint union, and given a set A and $k \in \mathbb{Z}_{+},\binom{A}{k}:=\{B \subseteq A:|B|=k\}$. For instance, for $N \in \mathbb{N}$ and $i \in[0: N],\binom{[N]}{i}$ denotes the set of all subsets of $[N]$ of size i.

Problem 1 (Exercise 5.1.1. in [1]).
Given a time step $n \in \mathbb{Z}_{+}$, we compute the conditional probability $\mathbb{P}\left\{X_{n+1}=j \mid X_{n}=i, X_{n-1}=i_{n-1}, \cdots, X_{0}=i_{0}\right\}$ for $i_{0}, i_{1}, \cdots, i_{n-1}, i, j \in \mathbb{S}:=[0: N]$. We note that

$$
X_{n+1}=\left|\left\{\xi_{1}, \xi_{2}, \cdots, \xi_{n+1}\right\}\right|= \begin{cases}\left|\left\{\xi_{1}, \xi_{2}, \cdots, \xi_{n}\right\}\right|=X_{n} & \text { if } \xi_{n+1} \in\left\{\xi_{1}, \xi_{2}, \cdots, \xi_{n}\right\} \tag{1}\\ \left|\left\{\xi_{1}, \xi_{2}, \cdots, \xi_{n}\right\}\right|+1=X_{n}+1 & \text { otherwise }\end{cases}
$$

So, $\mathbb{P}\left\{X_{n+1}=j \mid X_{n}=i, X_{n-1}=i_{n-1}, \cdots, X_{0}=i_{0}\right\}=0=\mathbb{P}\left\{X_{n+1}=j \mid X_{n}=i\right\}$ for all $j \in \mathbb{S} \backslash\{i, i+1\}$.

Now, we first consider the case $i<N$. Then, we have

$$
\begin{aligned}
& \mathbb{P}\left\{X_{n+1}=i+1 \mid X_{n}=i, X_{n-1}=i_{n-1}, \cdots, X_{0}=i_{0}\right\} \\
& =\mathbb{P}\left\{\xi_{n+1} \in \mathbb{S} \backslash\left\{\xi_{1}, \cdots, \xi_{n}\right\} \mid X_{n}=i, X_{n-1}=i_{n-1}, \cdots, X_{0}=i_{0}\right\} \\
& \stackrel{(\text { a) }}{=} \sum_{T \in\binom{[\sqrt{N}]}{i}} \mathbb{P}\left\{\xi_{n+1} \in \mathbb{S} \backslash T,\left\{\xi_{1}, \cdots, \xi_{n}\right\}=T \mid X_{n}=i, X_{n-1}=i_{n-1}, \cdots, X_{0}=i_{0}\right\}
\end{aligned}
$$

$$
\begin{align*}
& \cdot \mathbb{P}\left\{\left\{\xi_{1}, \cdots, \xi_{n}\right\}=T \mid X_{n}=i, X_{n-1}=i_{n-1}, \cdots, X_{0}=i_{0}\right\} \\
& \stackrel{\text { (b) }}{=} \sum_{T \in\binom{[N]}{i}} \underbrace{\mathbb{P}\left\{\xi_{n+1} \in \mathbb{S} \backslash T\right\}}_{=\frac{N-i}{N}} \mathbb{P}\left\{\left\{\xi_{1}, \cdots, \xi_{n}\right\}=T \mid X_{n}=i, X_{n-1}=i_{n-1}, \cdots, X_{0}=i_{0}\right\} \tag{2}\\
& \stackrel{(\mathrm{c})}{=} \frac{N-i}{N} \\
& \stackrel{(\mathrm{~d})}{=} \sum_{T \in\binom{[\mathrm{NN}]}{i}} \mathbb{P}\left\{\xi_{n+1} \in \mathbb{S} \backslash T\right\} \mathbb{P}\left\{\left\{\xi_{1}, \cdots, \xi_{n}\right\}=T \mid X_{n}=i\right\} \\
& \stackrel{(\mathrm{e})}{=} \sum_{T \in\binom{[N]}{i}} \mathbb{P}\left\{\xi_{n+1} \in \mathbb{S} \backslash T \mid\left\{\xi_{1}, \cdots, \xi_{n}\right\}=T, X_{n}=i\right\} \mathbb{P}\left\{\left\{\xi_{1}, \cdots, \xi_{n}\right\}=T \mid X_{n}=i\right\} \\
& \stackrel{(\mathrm{f})}{=} \mathbb{P}\left\{\xi_{n+1} \in \mathbb{S} \backslash\left\{\xi_{1}, \cdots, \xi_{n}\right\} \mid X_{n}=i\right\} \\
& =\mathbb{P}\left\{X_{n+1}=i+1 \mid X_{n}=i\right\},
\end{align*}
$$

where the step (a) follows from the relation

$$
\begin{aligned}
& \left\{\xi_{n+1} \in \mathbb{S} \backslash\left\{\xi_{1}, \cdots, \xi_{n}\right\}, X_{n}=i, X_{n-1}=i_{n-1}, \cdots, X_{0}=i_{0}\right\} \\
= & \biguplus_{T \in\binom{[n]}{i}}\left\{\xi_{n+1} \in \mathbb{S} \backslash T,\left\{\xi_{1}, \cdots, \xi_{n}\right\}=T, X_{n}=i, X_{n-1}=i_{n-1}, \cdots, X_{0}=i_{0}\right\},
\end{aligned}
$$

the step (b) and the step (e) is due to the independence between ξ_{n+1} and the σ-field $\mathcal{F}_{n}^{\xi}:=\sigma\left(\xi_{1}, \xi_{2}, \cdots, \xi_{n}\right)$ together with the fact that $X_{1}, X_{2}, \cdots, X_{n}$ are \mathcal{F}_{n}^{ξ}-measurable, the step (c) holds since $\xi_{n+1} \sim \operatorname{Unif}([N])$ and

$$
\left\{X_{0}=i_{0}, \cdots, X_{n-1}=i_{n-1}, X_{n}=i\right\}=\biguplus_{T \in\left(\begin{array}{c}
{\left[\begin{array}{c}
N] \\
i
\end{array}\right)}
\end{array}\right.}\left\{X_{0}=i_{0}, \cdots, X_{n-1}=i_{n-1}, X_{n}=i,\left\{\xi_{1}, \cdots, \xi_{n}\right\}=T\right\},
$$

the step (d) is owing to the relation

$$
\left\{X_{n}=i\right\}=\biguplus_{T \in\binom{[N]}{i}}\left\{X_{n}=i,\left\{\xi_{1}, \cdots, \xi_{n}\right\}=T\right\}
$$

together with the assumption $\xi_{n+1} \sim \operatorname{Unif}([N])$, and finally the step (f) comes from the relation

$$
\left\{\xi_{n+1} \in \mathbb{S} \backslash\left\{\xi_{1}, \cdots, \xi_{n}\right\}, X_{n}=i\right\}=\biguplus_{T \in\left(\begin{array}{c}
{\left[\begin{array}{c}
N] \\
i
\end{array}\right)}
\end{array}\right.}\left\{\xi_{n+1} \in \mathbb{S} \backslash T,\left\{\xi_{1}, \cdots, \xi_{n}\right\}=T, X_{n}=i\right\}
$$

As an immediate consequence, one has

$$
\begin{align*}
& \quad \mathbb{P}\left\{X_{n+1}=i \mid X_{n}=i, X_{n-1}=i_{n-1}, \cdots, X_{0}=i_{0}\right\} \\
& \stackrel{(\mathrm{g})}{=} 1-\mathbb{P}\left\{X_{n+1}=i+1 \mid X_{n}=i, X_{n-1}=i_{n-1}, \cdots, X_{0}=i_{0}\right\} \\
& \stackrel{(\mathrm{h})}{=} 1-\mathbb{P}\left\{X_{n+1}=i+1 \mid X_{n}=i\right\} \tag{3}\\
& \stackrel{(\mathrm{i})}{=} \mathbb{P}\left\{X_{n+1}=i \mid X_{n}=i\right\} \\
& \stackrel{(\mathrm{j})}{=} 1-\frac{N-i}{N}=\frac{i}{N},
\end{align*}
$$

where the step (g) and (i) follows from the fact that $X_{n+1} \in\{i, i+1\}$ given that $X_{n}=i$, and the step (h) and (j) comes from the computation (2). Hence, we eventually obtain

$$
\mathbb{P}\left\{X_{n+1}=j \mid X_{n}=i, X_{n-1}=i_{n-1}, \cdots, X_{0}=i_{0}\right\}=\mathbb{P}\left\{X_{n+1}=j \mid X_{n}=i\right\}= \begin{cases}\frac{N-i}{N} & \text { if } j=i+1 \tag{4}\\ \frac{i}{N} & \text { if } j=i \\ 0 & \text { otherwise }\end{cases}
$$

when $i<N$.
For the remaining case $i=N$, it's clear that

$$
\mathbb{P}\left\{X_{n+1}=j \mid X_{n}=N, X_{n-1}=i_{n-1}, \cdots, X_{0}=i_{0}\right\}=\mathbb{P}\left\{X_{n+1}=j \mid X_{n}=N\right\}= \begin{cases}1 & \text { if } j=N \tag{5}\\ 0 & \text { otherwise }\end{cases}
$$

In particular, we can see from (4) and (5) that

$$
\mathbb{P}\left\{X_{n+1}=j \mid X_{n}=i, X_{n-1}=i_{n-1}, \cdots, X_{0}=i_{0}\right\}=\mathbb{P}\left\{X_{n+1}=j \mid X_{n}=i\right\}
$$

for all $i_{0}, \cdots, i_{n-1}, i, j \in \mathbb{S}$, thereby the \mathbb{S}-valued stochastic process $\left\{X_{n}\right\}_{n=0}^{\infty}$ is a Markov chain according to the definition of Markov chains with countable state space in Section 5.1 of [1]. Finally, its transition probability $p: \mathbb{S} \times \mathbb{S} \rightarrow[0,1]$ is obtained immediately from (4) and (5) as

$$
p(i, j)=\mathbb{P}\left\{X_{n+1}=j \mid X_{n}=i\right\}= \begin{cases}\frac{i}{N} & \text { if } j=i \\ \frac{N-i}{N} & \text { if } j=i+1 \text { and } i<N \\ 0 & \text { otherwise }\end{cases}
$$

Problem 2 (Exercise 5.1.2. in [1]).
Assume on the contrary that $\left\{X_{n}\right\}_{n=0}^{\infty}$ is a Markov chain with the countable state space $\mathbb{S}:=\mathbb{Z}$. According to the definition of Markov chains with countable state space in Section 5.1 in [1], $\left\{X_{n}\right\}_{n=0}^{\infty}$ obeys the Markov property for every time step $n \in \mathbb{Z}_{+}$:

$$
\begin{equation*}
\mathbb{P}\left\{X_{n+1}=j \mid X_{n}=i, X_{n-1}=i_{n-1}, \cdots, X_{0}=i_{0}\right\}=\mathbb{P}\left\{X_{n+1}=j \mid X_{n}=i\right\} \tag{6}
\end{equation*}
$$

for all $i_{0}, \cdots, i_{n-1}, i, j \in \mathbb{S}$. In particular, the value of the probability $\mathbb{P}\left\{X_{n+1}=j \mid X_{n}=i, X_{n-1}=i_{n-1}, \cdots, X_{0}=i_{0}\right\}$ should be irrelevant of the path of past states $\left(i_{0}, i_{1}, \cdots, i_{n-1}\right) \in \mathbb{S}^{n}$. Now, we consider the fourth time step, i.e., $n=4$. One can consider the following two paths of the stochastic process $\left\{X_{n}\right\}_{n=0}^{\infty}$ between the times

0 and 4: $\left(X_{0}, X_{1}, X_{2}, X_{3}, X_{4}\right)=(0,1,1,1,2)$ and $\left(X_{0}, X_{1}, X_{2}, X_{3}, X_{4}\right)=(0,0,0,1,2)$. Due to the Markov property (6), we have

$$
\begin{align*}
\mathbb{P}\left\{X_{4}=2 \mid X_{3}=1, X_{2}=1, X_{1}=1, X_{0}=0\right\} & =\mathbb{P}\left\{X_{4}=2 \mid X_{3}=1\right\} \\
& =\mathbb{P}\left\{X_{4}=2 \mid X_{3}=1, X_{2}=0, X_{1}=0, X_{0}=0\right\} \tag{7}
\end{align*}
$$

1. We can easily see that $\left(X_{0}, X_{1}, X_{2}, X_{3}, X_{4}\right)=(0,1,1,1,2)$ if and only if $\left(\xi_{1}, \xi_{2}, \xi_{3}, \xi_{4}\right)=(+1,-1,+1,+1)$. On the other hand, $\left(X_{0}, X_{1}, X_{2}, X_{3}\right)=(0,1,1,1)$ if and only if $\left(\xi_{1}, \xi_{2}\right)=(+1,-1)$ and ξ_{3} can attain any value in $\{-1,+1\}$. Therefore, we conclude that

$$
\begin{aligned}
\left\{\left(X_{0}, X_{1}, X_{2}, X_{3}, X_{4}\right)=(0,1,1,1,2)\right\} & =\left\{\left(\xi_{1}, \xi_{2}, \xi_{3}, \xi_{4}\right)=(+1,-1,+1,+1)\right\} ; \\
\left\{\left(X_{0}, X_{1}, X_{2}, X_{3}\right)=(0,1,1,1)\right\} & =\left\{\left(\xi_{1}, \xi_{2}\right)=(+1,-1)\right\},
\end{aligned}
$$

thereby $\mathbb{P}\left\{\left(X_{0}, X_{1}, X_{2}, X_{3}, X_{4}\right)=(0,1,1,1,2)\right\}=\left(\frac{1}{2}\right)^{4}$ and $\mathbb{P}\left\{\left(X_{0}, X_{1}, X_{2}, X_{3}\right)=(0,1,1,1)\right\}=\left(\frac{1}{2}\right)^{2}$. Hence, we obtain

$$
\begin{equation*}
\mathbb{P}\left\{X_{4}=2 \mid X_{3}=1, X_{2}=1, X_{1}=1, X_{0}=0\right\}=\frac{\left(\frac{1}{2}\right)^{4}}{\left(\frac{1}{2}\right)^{2}}=\frac{1}{4} . \tag{8}
\end{equation*}
$$

2. It's clear that $\left(X_{0}, X_{1}, X_{2}, X_{3}, X_{4}\right)=(0,0,0,1,2)$ if and only if $\left(\xi_{1}, \xi_{2}, \xi_{3}, \xi_{4}\right)=(-1,+1,+1,+1)$, and $\left(X_{0}, X_{1}, X_{2}, X_{3}\right)=(0,0,0,1)$ if and only if $\left(\xi_{1}, \xi_{2}, \xi_{3}\right)=(-1,+1,+1)$. Thus, we deduce that

$$
\begin{aligned}
\left\{\left(X_{0}, X_{1}, X_{2}, X_{3}, X_{4}\right)=(0,0,0,1,2)\right\} & =\left\{\left(\xi_{1}, \xi_{2}, \xi_{3}, \xi_{4}\right)=(-1,+1,+1,+1)\right\} ; \\
\left\{\left(X_{0}, X_{1}, X_{2}, X_{3}\right)=(0,0,0,1)\right\} & =\left\{\left(\xi_{1}, \xi_{2}, \xi_{3}\right)=(-1,+1,+1)\right\}
\end{aligned}
$$

thereby $\mathbb{P}\left\{\left(X_{0}, X_{1}, X_{2}, X_{3}, X_{4}\right)=(0,0,0,1,2)\right\}=\left(\frac{1}{2}\right)^{4}$ and $\mathbb{P}\left\{\left(X_{0}, X_{1}, X_{2}, X_{3}\right)=(0,0,0,1)\right\}=\left(\frac{1}{2}\right)^{3}$.
So, one has

$$
\begin{equation*}
\mathbb{P}\left\{X_{4}=2 \mid X_{3}=1, X_{2}=0, X_{1}=0, X_{0}=0\right\}=\frac{\left(\frac{1}{2}\right)^{4}}{\left(\frac{1}{2}\right)^{3}}=\frac{1}{2} . \tag{9}
\end{equation*}
$$

Combining the above two straightforward computations, we can see that the equation (7) does not hold, which gives a contradiction to our initial assumption. Hence, the stochastic process $\left\{X_{n}\right\}_{n=0}^{\infty}$ is not a Markov chain.

Problem 3 (Exercise 5.1.5. in [1]: Bernoulli-Laplace model of a diffusion).
Let X_{n} denote the number of black balls in the left urn at the n-th time step. Let us take a closer look at all possible outcomes of X_{n+1} given that $X_{n}=i$, where $i \in \mathbb{S}:=[0: b]$. If $0<i<b$, there are three possible outcomes for $X_{n+1}, X_{n+1} \in\{i-1, i, i+1\}$, with the corresponding choice of balls from each urn at the $(n+1)$-th time step, and the choices can be described as follows:

$$
\begin{gather*}
X_{n+1}=i+1 \Leftrightarrow \text { We pick a white ball in the left urn, and a black ball in the right urn. } \\
X_{n+1}=i \Leftrightarrow \text { We pick balls of the same color in each urn. } \tag{10}
\end{gather*}
$$

$$
X_{n+1}=i-1 \Leftrightarrow \text { We pick a black ball in the left urn, and a white ball in the right urn. }
$$

If $i=0$, there are two possible outcomes for $X_{n+1}, X_{n+1} \in\{0,1\}$, with the corresponding choice of balls from each urn at the ($n+1$)-th time step, and the choices can be described as follows:

$$
\begin{align*}
& X_{n+1}=1 \Leftrightarrow \text { We pick a black ball in the right urn. } \\
& X_{n+1}=0 \Leftrightarrow \text { We pick a white ball in the right urn. } \tag{11}
\end{align*}
$$

Finally, if $i=b$, there are also two possible outcomes for $X_{n+1}, X_{n+1} \in\{b-1, b\}$, with the corresponding choice of balls from each urn at the $(n+1)$-th time step, and the choices can be described as follows:

$$
\begin{align*}
X_{n+1}=b & \Leftrightarrow \text { We pick a white ball in the left urn. } \tag{12}\\
X_{n+1}=b-1 & \Leftrightarrow \text { We pick a black ball in the left urn. }
\end{align*}
$$

Before we compute the transition probability $p: \mathbb{S} \times \mathbb{S} \rightarrow[0,1]$ of the \mathbb{S}-valued Markov chain $\left\{X_{n}\right\}_{n=0}^{\infty}$, we note that $\left\{X_{n}\right\}_{n=0}^{\infty}$ is indeed a Markov chain since the value of X_{n+1} is determined solely based on the value of X_{n} and the choice of balls from each urn at the $(n+1)$-th time step. This means that the past history between the times 0 and $n-1$ has no effect on the value of X_{n+1}, thereby the stochastic process $\left\{X_{n}\right\}_{n=0}^{\infty}$ satisfies the Markov property. According to the definition of Markov chains with countable state space in Section 5.1 in [1], it is a Markov chain with countable state space. Now, we compute the transition probability of $\left\{X_{n}\right\}_{n=0}^{\infty}$. At this point, we note that given $X_{n}=i$,
(the probability to choose a black ball in the left urn at the $(n+1)$-th time step. $)=\frac{i}{m}$;
(the probability to choose a white ball in the left urn at the $(n+1)$-th time step.) $=1-\frac{i}{m}$;
(the probability to choose a black ball in the right urn at the $(n+1)$-th time step.) $=\frac{b-i}{m}$;
(the probability to choose a white ball in the right urn at the $(n+1)$-th time step.) $=1-\frac{b-i}{m}$.

1. If $0<i<b$, then we can see from (10) and (13) that

$$
p(i, j)=\mathbb{P}\left\{X_{n+1}=j \mid X_{n}=i\right\}= \begin{cases}\frac{b-i}{m}\left(1-\frac{i}{m}\right) & \text { if } j=i+1 \tag{14}\\ \frac{i}{m} \cdot \frac{b-i}{m}+\left(1-\frac{i}{m}\right)\left(1-\frac{b-i}{m}\right) & \text { if } j=i \\ \frac{i}{m}\left(1-\frac{b-i}{m}\right) & \text { if } j=i-1 \\ 0 & \text { otherwise }\end{cases}
$$

2. If $i=0$, then we can deduce from (11) and (13) that

$$
p(0, j)=\mathbb{P}\left\{X_{n+1}=j \mid X_{n}=0\right\}= \begin{cases}1-\frac{b}{m} & \text { if } j=0 \tag{15}\\ \frac{b}{m} & \text { if } j=1 \\ 0 & \text { otherwise }\end{cases}
$$

3. If $i=b$, then we can conclude from (12) and (13) that

$$
p(b, j)=\mathbb{P}\left\{X_{n+1}=j \mid X_{n}=b\right\}= \begin{cases}1-\frac{b}{m} & \text { if } j=b \tag{16}\\ \frac{b}{m} & \text { if } j=b-1 \\ 0 & \text { otherwise }\end{cases}
$$

Combining all of the above computations (14)-(16) provides the following succinct form of the transition
probability $p: \mathbb{S} \times \mathbb{S} \rightarrow[0,1]$ of the Markov chain $\left\{X_{n}\right\}_{n=0}^{\infty}$: for any $(i, j) \in \mathbb{S} \times \mathbb{S}$,

$$
p(i, j)= \begin{cases}\frac{b-i}{m}\left(1-\frac{i}{m}\right) & \text { if } j=i+1 \text { and } i<b \\ \frac{i}{m} \cdot \frac{b-i}{m}+\left(1-\frac{i}{m}\right)\left(1-\frac{b-i}{m}\right) & \text { if } j=i ; \\ \frac{i}{m}\left(1-\frac{b-i}{m}\right) & \text { if } j=i-1 \text { and } i>0 \\ 0 & \text { otherwise }\end{cases}
$$

Problem 4 (Exercise 5.1.6. in [1]).
To begin with, we use the symbol Θ instead of θ. Then, we have mutually independent and identically distributed with uniform distribution over $(0,1), \Theta$ and $\left\{U_{n}: n \in \mathbb{N}\right\}$. Also, $X_{i}:=+1$ if $U_{i} \leq \Theta ; X_{i}:=-1$ otherwise, $S_{n}:=\sum_{i=1}^{n} X_{i}$ for $n \in \mathbb{N}$, and $S_{0}:=0$.

Now, we compute the conditional probability $\mathbb{P}\left\{X_{n+1}=1 \mid X_{1}, \cdots, X_{n}\right\}$. The joint probability density function of the $(n+1)$-dimensional random vector $\left(\Theta, U_{1}, \cdots, U_{n}\right), f_{n}: \mathbb{R}^{n+1} \rightarrow[0,+\infty)$, is given by

$$
f_{n}\left(\theta, u_{1}, \cdots, u_{n}\right)=\mathbb{1}_{(0,1)}(\theta)\left[\prod_{i=1}^{n} \mathbb{1}_{(0,1)}\left(u_{i}\right)\right], \forall\left(\theta, u_{1}, \cdots, u_{n}\right) \in \mathbb{R}^{n+1}
$$

from the independence of $\left\{\Theta, U_{1}, \cdots, U_{n}\right\}$. We can easily observe that $X_{i}=x_{i}$ if and only if $\operatorname{sign}\left(\Theta-U_{i}\right)=$ x_{i} for $x_{i} \in\{-1,+1\}$, where $\operatorname{sign}(x):=+1$ if $x \geq 0$, and $\operatorname{sign}(x):=-1$ otherwise. Then, we have

$$
\begin{align*}
\mathbb{P}\left\{X_{1}=x_{1}, \cdots, X_{n}=x_{n}\right\} & =\mathbb{P}\left\{\operatorname{sign}\left(\Theta-U_{1}\right)=x_{1}, \cdots, \operatorname{sign}\left(\Theta-U_{n}\right)=x_{n}\right\} \\
& =\int_{\left\{\left(\theta, u_{1}, \cdots, u_{n}\right) \in(0,1)^{n+1}: \operatorname{sign}\left(\theta-u_{i}\right)=x_{i}, \forall i \in[n]\right\}} \mathrm{d} \theta \mathrm{~d} u_{1} \cdots \mathrm{~d} u_{n} \\
& =\int_{0}^{1}\left[\int_{\Omega\left(x_{1}, \cdots, x_{n} ; \theta\right)} \mathrm{d} u_{1} \cdots \mathrm{~d} u_{n}\right] \mathrm{d} \theta \tag{17}\\
& =\int_{0}^{1} \lambda_{n}\left\{\Omega\left(x_{1}, \cdots, x_{n} ; \theta\right)\right\} \mathrm{d} \theta,
\end{align*}
$$

where $\Omega\left(x_{1}, \cdots, x_{n} ; \theta\right):=\left\{\left(u_{1}, \cdots, u_{n}\right) \in(0,1)^{n}: \operatorname{sign}\left(\theta-u_{i}\right)=x_{i}, \forall i \in[n]\right\} \subseteq(0,1)^{n}$. Here, $\lambda_{n}(\cdot)$ refers to the standard Lebesgue measure on \mathbb{R}^{n}. For $i \in[n]$, let

$$
\mathcal{I}\left(x_{i} ; \theta\right):= \begin{cases}(0, \theta] & \text { if } x_{i}=+1 \\ (\theta, 1) & \text { otherwise }\end{cases}
$$

Then, it's clear that $\Omega\left(x_{1}, \cdots, x_{n} ; \theta\right)=\prod_{i=1}^{n} \mathcal{I}\left(x_{i} ; \theta\right)$, thereby

$$
\begin{align*}
\lambda_{n}\left\{\Omega\left(x_{1}, \cdots, x_{n} ; \theta\right)\right\} & =\prod_{i=1}^{n} \lambda_{1}\left(\mathcal{I}\left(x_{i} ; \theta\right)\right) \\
& =\prod_{i=1}^{n}\left(\theta^{\frac{1+x_{i}}{2}}(1-\theta)^{\frac{1-x_{i}}{2}}\right) \tag{18}\\
& =\theta^{\frac{n+\sum_{i=1}^{n} x_{i}}{2}}(1-\theta)^{\frac{n-\sum_{i=1}^{n} x_{i}}{2}} .
\end{align*}
$$

Putting (18) into (17) yields

$$
\begin{align*}
\mathbb{P}\left\{X_{1}=x_{1}, \cdots, X_{n}=x_{n}\right\} & =\int_{0}^{1} \theta^{\frac{n+\sum_{i=1}^{n} x_{i}}{2}}(1-\theta)^{\frac{n-\sum_{i=1}^{n} x_{i}}{2}} \mathrm{~d} \theta \\
& =\mathbf{B}\left(\frac{n+\sum_{i=1}^{n} x_{i}}{2}+1, \frac{n-\sum_{i=1}^{n} x_{i}}{2}+1\right) \\
& =\frac{\Gamma\left(\frac{n+\sum_{i=1}^{n} x_{i}}{2}+1\right) \Gamma\left(\frac{n-\sum_{i=1}^{n} x_{i}}{2}+1\right)}{\Gamma(n+2)} \tag{19}\\
& =\frac{1}{(n+1)!} \Gamma\left(\frac{n+\sum_{i=1}^{n} x_{i}}{2}+1\right) \Gamma\left(\frac{n-\sum_{i=1}^{n} x_{i}}{2}+1\right),
\end{align*}
$$

where $\mathbf{B}(\cdot, \cdot):(0,+\infty) \times(0,+\infty) \rightarrow(0,+\infty)$ denotes the beta function defined by

$$
\mathbf{B}(\alpha, \beta):=\int_{0}^{1} \theta^{\alpha-1}(1-\theta)^{\beta-1} \mathrm{~d} \theta
$$

It is well-known that $\mathbf{B}(\alpha, \beta)=\frac{\Gamma(\alpha) \Gamma(\beta)}{\Gamma(\alpha+\beta)}$ for $\alpha, \beta>0$, where $\Gamma(\cdot):(0,+\infty) \rightarrow(0,+\infty)$ is the gamma function. Therefore, we deduce from (19) that for any $x_{1}, x_{2}, \cdots, x_{n+1} \in\{-1,+1\}$,

$$
\begin{align*}
\mathbb{P}\left\{X_{n+1}=x_{n+1} \mid X_{n}=x_{n}, \cdots, X_{1}=x_{1}\right\} & =\frac{\mathbb{P}\left\{X_{1}=x_{1}, \cdots, X_{n}=x_{n}, X_{n+1}=x_{n+1}\right\}}{\mathbb{P}\left\{X_{1}=x_{1}, \cdots, X_{n}=x_{n}\right\}} \\
& =\frac{\frac{1}{(n+2)!} \Gamma\left(\frac{n+s_{n}}{2}+\frac{1+x_{n+1}}{2}+1\right) \Gamma\left(\frac{n-s_{n}}{2}+\frac{1-x_{n+1}}{2}+1\right)}{\frac{1}{(n+1)!} \Gamma\left(\frac{n+s_{n}}{2}+1\right) \Gamma\left(\frac{n-s_{n}}{2}+1\right)} \\
& = \begin{cases}\frac{1}{2}+\frac{s_{n}}{2(n+2)} \quad \text { if } x_{n+1}=1 ; \\
\frac{1}{2}-\frac{s_{n}}{2(n+2)} \quad \text { otherwise. } .\end{cases} \tag{20}\\
& =\frac{1}{2}+\frac{x_{n+1}\left(\sum_{i=1}^{n} x_{i}\right)}{2(n+2)},
\end{align*}
$$

where $s_{n}:=\sum_{i=1}^{n} x_{i}$. In particular, we have the desired computation

$$
\mathbb{P}\left\{X_{n+1}=1 \mid X_{n}, \cdots, X_{1}\right\}=\frac{1}{2}+\frac{1}{2(n+2)} \sum_{i=1}^{n} X_{i} .
$$

Finally, let's prove that the \mathbb{Z}-valued stochastic process $\left\{S_{n}\right\}_{n=0}^{\infty}$ is a temporally inhomogeneous Markov chain. For every $\left(s_{1}, s_{2}, \cdots, s_{n+1}\right) \in \mathbb{Z}^{n+1}$, we have

$$
\begin{align*}
\mathbb{P}\left\{S_{n+1}=s_{n+1} \mid S_{n}=s_{n}, \cdots, S_{1}=s_{1}, S_{0}=0\right\} & =\mathbb{P}\left\{X_{n+1}=s_{n+1}-s_{n} \mid X_{n}=s_{n}-s_{n-1}, \cdots, X_{1}=s_{1}\right\} \\
& \stackrel{(\text { a) })}{=}\left\{\frac{1}{2}+\frac{\left(s_{n+1}-s_{n}\right) s_{n}}{2(n+2)}\right\} \mathbb{1}_{\{-1,+1\}}\left(s_{n+1}-s_{n}\right), \tag{21}
\end{align*}
$$

where the step (a) comes from (20). Hence, we obtain

$$
\begin{aligned}
& \mathbb{P}\left\{S_{n+1}=s_{n+1} \mid S_{n}=s_{n}\right\} \\
= & \sum_{\left(s_{1}, \cdots, s_{n-1}\right) \in \mathbb{Z}^{n-1}} \mathbb{P}\left\{S_{n+1}=s_{n+1} \mid S_{n}=s_{n}, \cdots, S_{1}=s_{1}, S_{0}=0\right\} \mathbb{P}\left\{S_{0}=0, S_{1}=s_{1}, \cdots, S_{n-1}=s_{n-1} \mid S_{n}=s_{n}\right\} \\
= & \sum_{\left(s_{1}, \cdots, s_{n-1}\right) \in \mathbb{Z}^{n-1}} \underbrace{\left\{\frac{1}{2}+\frac{\left(s_{n+1}-s_{n}\right) s_{n}}{2(n+2)}\right\} \mathbb{1}_{\{-1,+1\}}\left(s_{n+1}-s_{n}\right)}_{\text {independent of }\left(s_{1}, \cdots, s_{n-1}\right)} \mathbb{P}\left\{S_{0}=0, S_{1}=s_{1}, \cdots, S_{n-1}=s_{n-1} \mid S_{n}=s_{n}\right\} \\
= & \left\{\frac{1}{2}+\frac{\left(s_{n+1}-s_{n}\right) s_{n}}{2(n+2)}\right\} \mathbb{1}_{\{-1,+1\}}\left(s_{n+1}-s_{n}\right) \\
= & \mathbb{P}\left\{S_{n+1}=s_{n+1} \mid S_{n}=s_{n}, \cdots, S_{1}=s_{1}, S_{0}=0\right\},
\end{aligned}
$$

thereby $\left\{S_{n}\right\}_{n=0}^{\infty}$ is a \mathbb{Z}-valued Markov chain, and its transition probability at the n-th time step is given by

$$
p_{n}(i, j):= \begin{cases}\frac{1}{2}+\frac{i}{2(n+2)} & \text { if } j=i+1 ; \\ \frac{1}{2}-\frac{i}{2(n+2)} & \text { if } j=i-1 ; \\ 0 & \text { otherwise }\end{cases}
$$

Since $p_{n}(\cdot, \cdot): \mathbb{Z} \times \mathbb{Z} \rightarrow[0,1]$ is not constant of $n \in \mathbb{Z}_{+}$, we can conclude that the Markov chain $\left\{S_{n}\right\}_{n=0}^{\infty}$ is temporally inhomogeneous.

References

[1] Rick Durrett. Probability: theory and examples, volume 49. Cambridge university press, 2019.

