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Throughout this homework, let Z+ denote the set of all non-negative integers, and [a : b] := {a, a+ 1, · · · , b− 1, b}
for a, b ∈ Z with a ≤ b. We also write [n] := [1 : n] for n ∈ N. Moreover,

⊎
denotes the disjoint union, and

given a set A and k ∈ Z+,
(
A
k

)
:= {B ⊆ A : |B| = k}. For instance, for N ∈ N and i ∈ [0 : N ],

(
[N ]
i

)
denotes

the set of all subsets of [N ] of size i.

Problem 1 (Exercise 5.1.1. in [1]).

Given a time step n ∈ Z+, we compute the conditional probability P {Xn+1 = j|Xn = i,Xn−1 = in−1, · · · , X0 = i0}
for i0, i1, · · · , in−1, i, j ∈ S := [0 : N ]. We note that

Xn+1 = |{ξ1, ξ2, · · · , ξn+1}| =

|{ξ1, ξ2, · · · , ξn}| = Xn if ξn+1 ∈ {ξ1, ξ2, · · · , ξn} ;

|{ξ1, ξ2, · · · , ξn}|+ 1 = Xn + 1 otherwise.
(1)

So, P {Xn+1 = j|Xn = i,Xn−1 = in−1, · · · , X0 = i0} = 0 = P {Xn+1 = j|Xn = i} for all j ∈ S \ {i, i+ 1}.
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Now, we first consider the case i < N . Then, we have

P {Xn+1 = i+ 1|Xn = i,Xn−1 = in−1, · · · , X0 = i0}

= P {ξn+1 ∈ S \ {ξ1, · · · , ξn} |Xn = i,Xn−1 = in−1, · · · , X0 = i0}
(a)
=

∑
T∈([N ]

i )

P {ξn+1 ∈ S \ T, {ξ1, · · · , ξn} = T |Xn = i,Xn−1 = in−1, · · · , X0 = i0}

=
∑

T∈([N ]
i )

P {ξn+1 ∈ S \ T | {ξ1, · · · , ξn} = T,Xn = i,Xn−1 = in−1, · · · , X0 = i0}

· P {{ξ1, · · · , ξn} = T |Xn = i,Xn−1 = in−1, · · · , X0 = i0}
(b)
=

∑
T∈([N ]

i )

P {ξn+1 ∈ S \ T}︸ ︷︷ ︸
=N−i

N

P {{ξ1, · · · , ξn} = T |Xn = i,Xn−1 = in−1, · · · , X0 = i0}

(c)
=

N − i
N

(d)
=

∑
T∈([N ]

i )

P {ξn+1 ∈ S \ T}P {{ξ1, · · · , ξn} = T |Xn = i}

(e)
=

∑
T∈([N ]

i )

P {ξn+1 ∈ S \ T | {ξ1, · · · , ξn} = T,Xn = i}P {{ξ1, · · · , ξn} = T |Xn = i}

(f)
= P {ξn+1 ∈ S \ {ξ1, · · · , ξn} |Xn = i}

= P {Xn+1 = i+ 1|Xn = i} ,

(2)

where the step (a) follows from the relation

{ξn+1 ∈ S \ {ξ1, · · · , ξn} , Xn = i,Xn−1 = in−1, · · · , X0 = i0}

=
⊎

T∈([n]
i )

{ξn+1 ∈ S \ T, {ξ1, · · · , ξn} = T,Xn = i,Xn−1 = in−1, · · · , X0 = i0} ,

the step (b) and the step (e) is due to the independence between ξn+1 and the σ-field Fξn := σ (ξ1, ξ2, · · · , ξn)

together with the fact that X1, X2, · · · , Xn are Fξn-measurable, the step (c) holds since ξn+1 ∼ Unif ([N ])

and

{X0 = i0, · · · , Xn−1 = in−1, Xn = i} =
⊎

T∈([N ]
i )

{X0 = i0, · · · , Xn−1 = in−1, Xn = i, {ξ1, · · · , ξn} = T} ,

the step (d) is owing to the relation

{Xn = i} =
⊎

T∈([N ]
i )

{Xn = i, {ξ1, · · · , ξn} = T}

together with the assumption ξn+1 ∼ Unif ([N ]), and finally the step (f) comes from the relation

{ξn+1 ∈ S \ {ξ1, · · · , ξn} , Xn = i} =
⊎

T∈([N ]
i )

{ξn+1 ∈ S \ T, {ξ1, · · · , ξn} = T,Xn = i} .
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As an immediate consequence, one has

P {Xn+1 = i|Xn = i,Xn−1 = in−1, · · · , X0 = i0}
(g)
= 1− P {Xn+1 = i+ 1|Xn = i,Xn−1 = in−1, · · · , X0 = i0}
(h)
= 1− P {Xn+1 = i+ 1|Xn = i}
(i)
= P {Xn+1 = i|Xn = i}
(j)
= 1− N − i

N
=

i

N
,

(3)

where the step (g) and (i) follows from the fact that Xn+1 ∈ {i, i+ 1} given that Xn = i, and the step (h)

and (j) comes from the computation (2). Hence, we eventually obtain

P {Xn+1 = j|Xn = i,Xn−1 = in−1, · · · , X0 = i0} = P {Xn+1 = j|Xn = i} =


N−i
N if j = i+ 1;

i
N if j = i;

0 otherwise,

(4)

when i < N .

For the remaining case i = N , it’s clear that

P {Xn+1 = j|Xn = N,Xn−1 = in−1, · · · , X0 = i0} = P {Xn+1 = j|Xn = N} =

1 if j = N ;

0 otherwise.
(5)

In particular, we can see from (4) and (5) that

P {Xn+1 = j|Xn = i,Xn−1 = in−1, · · · , X0 = i0} = P {Xn+1 = j|Xn = i}

for all i0, · · · , in−1, i, j ∈ S, thereby the S-valued stochastic process {Xn}∞n=0 is a Markov chain according

to the definition of Markov chains with countable state space in Section 5.1 of [1]. Finally, its transition

probability p : S× S→ [0, 1] is obtained immediately from (4) and (5) as

p(i, j) = P {Xn+1 = j|Xn = i} =


i
N if j = i;

N−i
N if j = i+ 1 and i < N ;

0 otherwise.

Problem 2 (Exercise 5.1.2. in [1]).

Assume on the contrary that {Xn}∞n=0 is a Markov chain with the countable state space S := Z. According

to the definition of Markov chains with countable state space in Section 5.1 in [1], {Xn}∞n=0 obeys the Markov

property for every time step n ∈ Z+:

P {Xn+1 = j|Xn = i,Xn−1 = in−1, · · · , X0 = i0} = P {Xn+1 = j|Xn = i} (6)

for all i0, · · · , in−1, i, j ∈ S. In particular, the value of the probability P {Xn+1 = j|Xn = i,Xn−1 = in−1, · · · , X0 = i0}
should be irrelevant of the path of past states (i0, i1, · · · , in−1) ∈ Sn. Now, we consider the fourth time step,

i.e., n = 4. One can consider the following two paths of the stochastic process {Xn}∞n=0 between the times

3



0 and 4: (X0, X1, X2, X3, X4) = (0, 1, 1, 1, 2) and (X0, X1, X2, X3, X4) = (0, 0, 0, 1, 2). Due to the Markov

property (6), we have

P {X4 = 2|X3 = 1, X2 = 1, X1 = 1, X0 = 0} = P {X4 = 2|X3 = 1}

= P {X4 = 2|X3 = 1, X2 = 0, X1 = 0, X0 = 0} .
(7)

1. We can easily see that (X0, X1, X2, X3, X4) = (0, 1, 1, 1, 2) if and only if (ξ1, ξ2, ξ3, ξ4) = (+1,−1,+1,+1).

On the other hand, (X0, X1, X2, X3) = (0, 1, 1, 1) if and only if (ξ1, ξ2) = (+1,−1) and ξ3 can attain

any value in {−1,+1}. Therefore, we conclude that

{(X0, X1, X2, X3, X4) = (0, 1, 1, 1, 2)} = {(ξ1, ξ2, ξ3, ξ4) = (+1,−1,+1,+1)} ;

{(X0, X1, X2, X3) = (0, 1, 1, 1)} = {(ξ1, ξ2) = (+1,−1)} ,

thereby P {(X0, X1, X2, X3, X4) = (0, 1, 1, 1, 2)} =
(

1
2

)4
and P {(X0, X1, X2, X3) = (0, 1, 1, 1)} =

(
1
2

)2
.

Hence, we obtain

P {X4 = 2|X3 = 1, X2 = 1, X1 = 1, X0 = 0} =

(
1
2

)4(
1
2

)2 =
1

4
. (8)

2. It’s clear that (X0, X1, X2, X3, X4) = (0, 0, 0, 1, 2) if and only if (ξ1, ξ2, ξ3, ξ4) = (−1,+1,+1,+1), and

(X0, X1, X2, X3) = (0, 0, 0, 1) if and only if (ξ1, ξ2, ξ3) = (−1,+1,+1). Thus, we deduce that

{(X0, X1, X2, X3, X4) = (0, 0, 0, 1, 2)} = {(ξ1, ξ2, ξ3, ξ4) = (−1,+1,+1,+1)} ;

{(X0, X1, X2, X3) = (0, 0, 0, 1)} = {(ξ1, ξ2, ξ3) = (−1,+1,+1)} ,

thereby P {(X0, X1, X2, X3, X4) = (0, 0, 0, 1, 2)} =
(

1
2

)4
and P {(X0, X1, X2, X3) = (0, 0, 0, 1)} =

(
1
2

)3
.

So, one has

P {X4 = 2|X3 = 1, X2 = 0, X1 = 0, X0 = 0} =

(
1
2

)4(
1
2

)3 =
1

2
. (9)

Combining the above two straightforward computations, we can see that the equation (7) does not hold,

which gives a contradiction to our initial assumption. Hence, the stochastic process {Xn}∞n=0 is not a Markov

chain.

Problem 3 (Exercise 5.1.5. in [1]: Bernoulli-Laplace model of a diffusion).

Let Xn denote the number of black balls in the left urn at the n-th time step. Let us take a closer look

at all possible outcomes of Xn+1 given that Xn = i, where i ∈ S := [0 : b]. If 0 < i < b, there are three

possible outcomes for Xn+1, Xn+1 ∈ {i− 1, i, i+ 1}, with the corresponding choice of balls from each urn

at the (n+ 1)-th time step, and the choices can be described as follows:

Xn+1 = i+ 1⇔We pick a white ball in the left urn, and a black ball in the right urn.

Xn+1 = i⇔We pick balls of the same color in each urn.

Xn+1 = i− 1⇔We pick a black ball in the left urn, and a white ball in the right urn.

(10)

If i = 0, there are two possible outcomes for Xn+1, Xn+1 ∈ {0, 1}, with the corresponding choice of balls

from each urn at the (n+ 1)-th time step, and the choices can be described as follows:

Xn+1 = 1⇔We pick a black ball in the right urn.

Xn+1 = 0⇔We pick a white ball in the right urn.
(11)
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Finally, if i = b, there are also two possible outcomes for Xn+1, Xn+1 ∈ {b− 1, b}, with the corresponding

choice of balls from each urn at the (n+ 1)-th time step, and the choices can be described as follows:

Xn+1 = b⇔We pick a white ball in the left urn.

Xn+1 = b− 1⇔We pick a black ball in the left urn.
(12)

Before we compute the transition probability p : S × S → [0, 1] of the S-valued Markov chain {Xn}∞n=0,

we note that {Xn}∞n=0 is indeed a Markov chain since the value of Xn+1 is determined solely based on the

value of Xn and the choice of balls from each urn at the (n + 1)-th time step. This means that the past

history between the times 0 and n − 1 has no effect on the value of Xn+1, thereby the stochastic process

{Xn}∞n=0 satisfies the Markov property. According to the definition of Markov chains with countable state

space in Section 5.1 in [1], it is a Markov chain with countable state space. Now, we compute the transition

probability of {Xn}∞n=0. At this point, we note that given Xn = i,

(the probability to choose a black ball in the left urn at the (n+ 1)-th time step.) =
i

m
;

(the probability to choose a white ball in the left urn at the (n+ 1)-th time step.) = 1− i

m
;

(the probability to choose a black ball in the right urn at the (n+ 1)-th time step.) =
b− i
m

;

(the probability to choose a white ball in the right urn at the (n+ 1)-th time step.) = 1− b− i
m

.

(13)

1. If 0 < i < b, then we can see from (10) and (13) that

p(i, j) = P {Xn+1 = j|Xn = i} =



b−i
m

(
1− i

m

)
if j = i+ 1;

i
m ·

b−i
m +

(
1− i

m

) (
1− b−i

m

)
if j = i;

i
m

(
1− b−i

m

)
if j = i− 1;

0 otherwise.

(14)

2. If i = 0, then we can deduce from (11) and (13) that

p(0, j) = P {Xn+1 = j|Xn = 0} =


1− b

m if j = 0;

b
m if j = 1;

0 otherwise.

(15)

3. If i = b, then we can conclude from (12) and (13) that

p(b, j) = P {Xn+1 = j|Xn = b} =


1− b

m if j = b;

b
m if j = b− 1;

0 otherwise.

(16)

Combining all of the above computations (14)–(16) provides the following succinct form of the transition
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probability p : S× S→ [0, 1] of the Markov chain {Xn}∞n=0: for any (i, j) ∈ S× S,

p(i, j) =



b−i
m

(
1− i

m

)
if j = i+ 1 and i < b;

i
m ·

b−i
m +

(
1− i

m

) (
1− b−i

m

)
if j = i;

i
m

(
1− b−i

m

)
if j = i− 1 and i > 0;

0 otherwise.

Problem 4 (Exercise 5.1.6. in [1]).

To begin with, we use the symbol Θ instead of θ. Then, we have mutually independent and identically

distributed with uniform distribution over (0, 1), Θ and {Un : n ∈ N}. Also, Xi := +1 if Ui ≤ Θ; Xi := −1

otherwise, Sn :=
∑n

i=1Xi for n ∈ N, and S0 := 0.

Now, we compute the conditional probability P {Xn+1 = 1|X1, · · · , Xn}. The joint probability density

function of the (n+ 1)-dimensional random vector (Θ, U1, · · · , Un), fn : Rn+1 → [0,+∞), is given by

fn (θ, u1, · · · , un) = 1(0,1)(θ)

[
n∏
i=1

1(0,1)(ui)

]
, ∀ (θ, u1, · · · , un) ∈ Rn+1,

from the independence of {Θ, U1, · · · , Un}. We can easily observe that Xi = xi if and only if sign (Θ− Ui) =

xi for xi ∈ {−1,+1}, where sign(x) := +1 if x ≥ 0, and sign(x) := −1 otherwise. Then, we have

P {X1 = x1, · · · , Xn = xn} = P {sign (Θ− U1) = x1, · · · , sign (Θ− Un) = xn}

=

∫
{(θ,u1,··· ,un)∈(0,1)n+1: sign(θ−ui)=xi, ∀i∈[n]}

dθdu1 · · · dun

=

∫ 1

0

[∫
Ω(x1,··· ,xn;θ)

du1 · · · dun

]
dθ

=

∫ 1

0
λn {Ω (x1, · · · , xn; θ)} dθ,

(17)

where Ω (x1, · · · , xn; θ) := {(u1, · · · , un) ∈ (0, 1)n : sign (θ − ui) = xi, ∀i ∈ [n]} ⊆ (0, 1)n. Here, λn (·) refers

to the standard Lebesgue measure on Rn. For i ∈ [n], let

I(xi; θ) :=

(0, θ] if xi = +1;

(θ, 1) otherwise.

Then, it’s clear that Ω (x1, · · · , xn; θ) =
∏n
i=1 I(xi; θ), thereby

λn {Ω (x1, · · · , xn; θ)} =

n∏
i=1

λ1 (I(xi; θ))

=

n∏
i=1

(
θ

1+xi
2 (1− θ)

1−xi
2

)
= θ

n+
∑n

i=1 xi
2 (1− θ)

n−
∑n

i=1 xi
2 .

(18)
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Putting (18) into (17) yields

P {X1 = x1, · · · , Xn = xn} =

∫ 1

0
θ

n+
∑n

i=1 xi
2 (1− θ)

n−
∑n

i=1 xi
2 dθ

= B

(
n+

∑n
i=1 xi

2
+ 1,

n−
∑n

i=1 xi
2

+ 1

)

=
Γ
(
n+

∑n
i=1 xi
2 + 1

)
Γ
(
n−

∑n
i=1 xi
2 + 1

)
Γ(n+ 2)

=
1

(n+ 1)!
Γ

(
n+

∑n
i=1 xi

2
+ 1

)
Γ

(
n−

∑n
i=1 xi

2
+ 1

)
,

(19)

where B(·, ·) : (0,+∞)× (0,+∞)→ (0,+∞) denotes the beta function defined by

B(α, β) :=

∫ 1

0
θα−1(1− θ)β−1dθ.

It is well-known that B(α, β) = Γ(α)Γ(β)
Γ(α+β) for α, β > 0, where Γ(·) : (0,+∞)→ (0,+∞) is the gamma function.

Therefore, we deduce from (19) that for any x1, x2, · · · , xn+1 ∈ {−1,+1},

P {Xn+1 = xn+1|Xn = xn, · · · , X1 = x1} =
P {X1 = x1, · · · , Xn = xn, Xn+1 = xn+1}

P {X1 = x1, · · · , Xn = xn}

=

1
(n+2)!Γ

(
n+sn

2 + 1+xn+1

2 + 1
)

Γ
(
n−sn

2 + 1−xn+1

2 + 1
)

1
(n+1)!Γ

(
n+sn

2 + 1
)

Γ
(
n−sn

2 + 1
)

=

1
2 + sn

2(n+2) if xn+1 = 1;

1
2 −

sn
2(n+2) otherwise.

=
1

2
+
xn+1 (

∑n
i=1 xi)

2(n+ 2)
,

(20)

where sn :=
∑n

i=1 xi. In particular, we have the desired computation

P {Xn+1 = 1|Xn, · · · , X1} =
1

2
+

1

2(n+ 2)

n∑
i=1

Xi.

Finally, let’s prove that the Z-valued stochastic process {Sn}∞n=0 is a temporally inhomogeneous Markov

chain. For every (s1, s2, · · · , sn+1) ∈ Zn+1, we have

P {Sn+1 = sn+1|Sn = sn, · · · , S1 = s1, S0 = 0} = P {Xn+1 = sn+1 − sn|Xn = sn − sn−1, · · · , X1 = s1}
(a)
=

{
1

2
+

(sn+1 − sn) sn
2(n+ 2)

}
1{−1,+1} (sn+1 − sn) ,

(21)
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where the step (a) comes from (20). Hence, we obtain

P {Sn+1 = sn+1|Sn = sn}

=
∑

(s1,··· ,sn−1)∈Zn−1

P {Sn+1 = sn+1|Sn = sn, · · · , S1 = s1, S0 = 0}P {S0 = 0, S1 = s1, · · · , Sn−1 = sn−1|Sn = sn}

=
∑

(s1,··· ,sn−1)∈Zn−1

{
1

2
+

(sn+1 − sn) sn
2(n+ 2)

}
1{−1,+1} (sn+1 − sn)︸ ︷︷ ︸

independent of (s1,··· ,sn−1)

P {S0 = 0, S1 = s1, · · · , Sn−1 = sn−1|Sn = sn}

=

{
1

2
+

(sn+1 − sn) sn
2(n+ 2)

}
1{−1,+1} (sn+1 − sn)

= P {Sn+1 = sn+1|Sn = sn, · · · , S1 = s1, S0 = 0} ,

thereby {Sn}∞n=0 is a Z-valued Markov chain, and its transition probability at the n-th time step is given by

pn(i, j) :=


1
2 + i

2(n+2) if j = i+ 1;

1
2 −

i
2(n+2) if j = i− 1;

0 otherwise.

Since pn(·, ·) : Z× Z→ [0, 1] is not constant of n ∈ Z+, we can conclude that the Markov chain {Sn}∞n=0 is

temporally inhomogeneous.
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